Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences
- URL: http://arxiv.org/abs/2409.04390v1
- Date: Fri, 6 Sep 2024 16:29:04 GMT
- Title: Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences
- Authors: Rui Yu, Runkai Zhao, Cong Nie, Heng Wang, HuaiCheng Yan, Meng Wang,
- Abstract summary: We introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information.
We have conducted experiments on the aggregation and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance.
- Score: 25.74000325019015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust LiDAR 3D object detection is essential for comprehensive scene understanding in autonomous driving. Despite its importance, LiDAR detection performance is limited by inherent constraints of point cloud data, particularly under conditions of extended distances and occlusions. Recently, temporal aggregation has been proven to significantly enhance detection accuracy by fusing multi-frame viewpoint information and enriching the spatial representation of objects. In this work, we introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information. We aim to improve the spatial-temporal interpretation capabilities of the LiDAR detector by incorporating a dynamic prior, generated from a non-learnable motion estimation model. Specifically, Motion-Guided Feature Aggregation (MGFA) is proposed to utilize the object trajectory from previous and future motion states to model spatial-temporal correlations into gaussian heatmap over a driving sequence. This motion-based heatmap then guides the temporal feature fusion, enriching the proposed object features. Moreover, we design a Dual Correlation Weighting Module (DCWM) that effectively facilitates the interaction between past and prospective frames through scene- and channel-wise feature abstraction. In the end, a cascade cross-attention-based decoder is employed to refine the 3D prediction. We have conducted experiments on the Waymo and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance with effective spatial-temporal feature learning.
Related papers
- PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
We propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection.
We use point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement.
We conduct extensive experiments on the large-scale dataset to demonstrate that our approach performs well against state-of-the-art methods.
arXiv Detail & Related papers (2023-12-13T18:59:13Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - MGTANet: Encoding Sequential LiDAR Points Using Long Short-Term
Motion-Guided Temporal Attention for 3D Object Detection [8.305942415868042]
Most LiDAR sensors generate a sequence of point clouds in real-time.
Recent studies have revealed that substantial performance improvement can be achieved by exploiting the context present in a sequence of point sets.
We propose a novel 3D object detection architecture, which can encode point cloud sequences acquired by multiple successive scans.
arXiv Detail & Related papers (2022-12-01T11:24:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - Motion-aware Memory Network for Fast Video Salient Object Detection [15.967509480432266]
We design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD.
In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames.
In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches.
The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
arXiv Detail & Related papers (2022-08-01T15:56:19Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - 3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature
Correlation [0.0]
3D-FCT is a Siamese network architecture that utilizes temporal information to simultaneously perform the related tasks of 3D object detection and tracking.
Our proposed method is evaluated on the KITTI tracking dataset where it is shown to provide an improvement of 5.57% mAP over a state-of-the-art approach.
arXiv Detail & Related papers (2021-10-06T06:36:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.