VacciNet: Towards a Smart Framework for Learning the Distribution Chain
Optimization of Vaccines for a Pandemic
- URL: http://arxiv.org/abs/2208.01112v1
- Date: Mon, 1 Aug 2022 19:37:33 GMT
- Title: VacciNet: Towards a Smart Framework for Learning the Distribution Chain
Optimization of Vaccines for a Pandemic
- Authors: Jayeeta Mondal, Jeet Dutta, Hrishav Bakul Barua
- Abstract summary: We put forward a novel framework leveraging Supervised Learning and Reinforcement Learning (RL) which we call VacciNet.
RL is capable of learning to predict the demand of vaccination in a state of a country as well as suggest optimal vaccine allocation in the state for minimum cost of procurement and supply.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vaccinations against viruses have always been the need of the hour since long
past. However, it is hard to efficiently distribute the vaccines (on time) to
all the corners of a country, especially during a pandemic. Considering the
vastness of the population, diversified communities, and demands of a smart
society, it is an important task to optimize the vaccine distribution strategy
in any country/state effectively. Although there is a profusion of data (Big
Data) from various vaccine administration sites that can be mined to gain
valuable insights about mass vaccination drives, very few attempts has been
made towards revolutionizing the traditional mass vaccination campaigns to
mitigate the socio-economic crises of pandemic afflicted countries. In this
paper, we bridge this gap in studies and experimentation. We collect daily
vaccination data which is publicly available and carefully analyze it to
generate meaning-full insights and predictions. We put forward a novel
framework leveraging Supervised Learning and Reinforcement Learning (RL) which
we call VacciNet, that is capable of learning to predict the demand of
vaccination in a state of a country as well as suggest optimal vaccine
allocation in the state for minimum cost of procurement and supply. At the
present, our framework is trained and tested with vaccination data of the USA.
Related papers
- SPEED++: A Multilingual Event Extraction Framework for Epidemic Prediction and Preparedness [73.73883111570458]
We introduce the first multilingual Event Extraction framework for extracting epidemic event information for a wide range of diseases and languages.
Annotating data in every language is infeasible; thus we develop zero-shot cross-lingual cross-disease models.
Our framework can provide epidemic warnings for COVID-19 in its earliest stages in Dec 2019 from Chinese Weibo posts without any training in Chinese.
arXiv Detail & Related papers (2024-10-24T03:03:54Z) - Accurate Measures of Vaccination and Concerns of Vaccine Holdouts from
Web Search Logs [31.231365080959247]
We show how large-scale search engine logs and machine learning can be leveraged to fill gaps in vaccine data.
We develop a vaccine intent classifier that can accurately detect when a user is seeking the COVID-19 vaccine on search.
We use our classifier to identify two groups, vaccine early adopters and vaccine holdouts.
arXiv Detail & Related papers (2023-06-12T23:19:55Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
We present a novel technique for evaluating vaccine allocation strategies using a multi-armed bandit framework.
$m$-top exploration allows the algorithm to learn $m$ policies for which it expects the highest utility.
We consider the Belgian COVID-19 epidemic using the individual-based model STRIDE, where we learn a set of vaccination policies.
arXiv Detail & Related papers (2023-01-30T12:22:30Z) - VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19
Vaccination on Twitter [6.061534265076204]
We create a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance)
To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.
arXiv Detail & Related papers (2023-01-17T02:00:31Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
We find that doctors are overall more positive toward the COVID-19 vaccines.
Doctors are more concerned with the effectiveness of the vaccines over newer variants.
Nurses pay more attention to the potential side effects on children.
arXiv Detail & Related papers (2022-09-11T14:22:16Z) - A feasibility study proposal of the predictive model to enable the
prediction of population susceptibility to COVID-19 by analysis of vaccine
utilization for advising deployment of a booster dose [0.0]
SARS-CoV-2 strain of B1.1.529 or Omicron spreading around the globe.
Concerns that it will not end soon and that it will be a race against time until a more contagious and virulent variant emerges.
One of the most promising approaches for preventing virus propagation is to maintain continuous high vaccination efficacy.
arXiv Detail & Related papers (2022-04-25T16:05:59Z) - Sentiment Analysis and Topic Modeling for COVID-19 Vaccine Discussions [10.194753795363667]
We conduct an in-depth analysis of tweets related to the coronavirus vaccine on Twitter.
Results show that a majority of people are confident in the effectiveness of vaccines and are willing to get vaccinated.
Negative tweets are often associated with the complaints of vaccine shortages, side effects after injections and possible death after being vaccinated.
arXiv Detail & Related papers (2021-10-08T23:30:17Z) - Vaccine allocation policy optimization and budget sharing mechanism
using Thompson sampling [0.0]
We take the perspective of decision-making agents that aim to minimize the size of their susceptible populations.
We propose an optimization policy based on Thompson sampling to learn mean vaccine efficiency rates over time.
We show that under a fixed global vaccine allocation budget, most countries can reduce their national number of infections and deaths.
arXiv Detail & Related papers (2021-09-21T07:22:03Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
We examine the extent to which the vaccination debate on Twitter is conductive to potential outreach to the vaccination hesitant.
We discover that the vaccination skeptics, as well as the advocates, reside in their own distinct "echo chambers"
At the center of these echo chambers we find the ardent supporters, for which we build highly accurate network- and content-based classifiers.
arXiv Detail & Related papers (2020-03-26T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.