論文の概要: Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2208.01195v1
- Date: Tue, 2 Aug 2022 01:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-03 13:14:07.451540
- Title: Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation
- Title(参考訳): 両世界のベストを尽くす: 教師なしドメイン適応のためのドメイン指向トランスフォーマー
- Authors: Wenxuan Ma, Jinming Zhang, Shuang Li, Chi Harold Liu, Yulin Wang, Wei
Li
- Abstract要約: Unsupervised Domain Adaptation (UDA)は、限られた実験データセットから現実の制約のないドメインへのディープラーニングの展開を促進する。
ほとんどのUDAアプローチは、共通の埋め込み空間内の機能を整列させ、ターゲット予測に共有分類器を適用する。
本稿では,異なる領域に着目した2つの個別空間における特徴アライメントを同時に実施し,各領域に対してドメイン指向の分類器を作成することを提案する。
- 参考スコア(独自算出の注目度): 31.150256154504696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive studies on Unsupervised Domain Adaptation (UDA) have propelled the
deployment of deep learning from limited experimental datasets into real-world
unconstrained domains. Most UDA approaches align features within a common
embedding space and apply a shared classifier for target prediction. However,
since a perfectly aligned feature space may not exist when the domain
discrepancy is large, these methods suffer from two limitations. First, the
coercive domain alignment deteriorates target domain discriminability due to
lacking target label supervision. Second, the source-supervised classifier is
inevitably biased to source data, thus it may underperform in target domain. To
alleviate these issues, we propose to simultaneously conduct feature alignment
in two individual spaces focusing on different domains, and create for each
space a domain-oriented classifier tailored specifically for that domain.
Specifically, we design a Domain-Oriented Transformer (DOT) that has two
individual classification tokens to learn different domain-oriented
representations, and two classifiers to preserve domain-wise discriminability.
Theoretical guaranteed contrastive-based alignment and the source-guided
pseudo-label refinement strategy are utilized to explore both domain-invariant
and specific information. Comprehensive experiments validate that our method
achieves state-of-the-art on several benchmarks.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA)に関する大規模な研究は、限られた実験データセットから現実の制約のないドメインへのディープラーニングの展開を促進する。
ほとんどのUDAアプローチは、共通の埋め込み空間内の機能を整列させ、ターゲット予測に共有分類器を適用する。
しかし、ドメインの不一致が大きい場合、完全に整列した特徴空間は存在しないため、これらの手法には2つの制限がある。
まず、強制的なドメインアライメントは、ターゲットラベルの監督が欠如しているため、ターゲットドメインの識別性を低下させる。
第2に、ソース管理分類器は、ソースデータに必然的に偏りがあるため、ターゲットドメインでは性能が低下する可能性がある。
これらの問題を緩和するために、異なる領域に焦点を当てた2つの個別の空間で同時に機能アライメントを行い、その領域に特化されたドメイン指向分類器を作成することを提案する。
具体的には、異なるドメイン指向表現を学習するための2つの個別分類トークンを持つドメイン指向変換器(DOT)と、ドメインワイド識別性を維持するための2つの分類器を設計する。
理論的に保証されたコントラストベースアライメントとソース誘導擬似ラベルリファインメント戦略を用いて、ドメイン不変情報と特定情報の両方を探索する。
包括的実験により,本手法がいくつかのベンチマークで最先端の手法であることを検証した。
関連論文リスト
- Dynamic Instance Domain Adaptation [109.53575039217094]
教師なしのドメイン適応に関するほとんどの研究は、各ドメインのトレーニングサンプルがドメインラベルを伴っていると仮定している。
適応的な畳み込みカーネルを持つ動的ニューラルネットワークを開発し、各インスタンスにドメインに依存しない深い特徴を適応させるために、インスタンス適応残差を生成する。
我々のモデルはDIDA-Netと呼ばれ、複数の一般的な単一ソースおよび複数ソースのUDAデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-09T20:05:54Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
教師なしのドメイン適応オブジェクト検出は、リッチラベル付きデータで訓練された元のソースドメインから、ラベルなしデータで新しいターゲットドメインに適応することを目的としている。
近年、主流のアプローチは、敵対的学習を通じてこのタスクを実行するが、それでも2つの制限に悩まされている。
上記の課題に対処するために,JADF(Joint Adaptive Detection framework)を提案する。
論文 参考訳(メタデータ) (2021-09-19T00:27:08Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
教師なしのドメイン適応は、ラベル付きソースドメインからモデルをトレーニングし、ラベルなしのターゲットドメインで予測することを目的としています。
既存のメソッドは2つのドメインをドメインレベルに直接アライメントするか、あるいは深い機能に基づいてクラスレベルのドメインアライメントを実行する傾向があります。
本稿では,クラスレベルのアライメント手法について述べる。
論文 参考訳(メタデータ) (2021-09-14T09:23:27Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA)は、異なる分散されたラベル付きソースドメインから学習モデルを構築することで、ラベルなしのターゲットサンプルを認識しようとする。
本稿では,タスク固有のカテゴリ境界に一致するソースとターゲット領域のデータ分布を同時に整合させる新しいアドリラルデュアル・ディスタンス・ネットワーク(AD$2$CN)を提案する。
具体的には、ドメイン不変の特徴発生器を利用して、識別的クロスドメインアライメントのガイダンスにより、ソースとターゲットデータを潜在共通空間に埋め込む。
論文 参考訳(メタデータ) (2020-08-27T01:29:10Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
最先端のアプローチは、セマンティックレベルのアライメントの実行がドメインシフトの問題に取り組むのに役立つことを証明している。
我々は,物事領域や物事に対する異なる戦略による意味レベルのアライメントを改善することを提案する。
提案手法に加えて,提案手法は,ソースとターゲットドメイン間の最も類似した機能やインスタンス機能を最小化することにより,この問題の緩和に有効であることを示す。
論文 参考訳(メタデータ) (2020-03-18T04:43:25Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z) - Dual Adversarial Domain Adaptation [6.69797982848003]
教師なしドメイン適応は、ラベル付きソースドメインからラベルなしターゲットドメインへの知識の転送を目的としている。
近年の研究では、判別器が両方のドメインにドメイン情報を備えている場合、複雑なマルチモーダル情報を保存できることが示されている。
ドメインレベルのアライメントとクラスレベルのアライメントを同時に行うために,2Kドル分の出力を持つ判別器を単一識別器に適用する。
論文 参考訳(メタデータ) (2020-01-01T07:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。