GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction
- URL: http://arxiv.org/abs/2208.01220v1
- Date: Tue, 2 Aug 2022 03:14:13 GMT
- Title: GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction
- Authors: Jiacheng Zhu, Jielin Qiu, Zhuolin Yang, Douglas Weber, Michael A.
Rosenberg, Emerson Liu, Bo Li, Ding Zhao
- Abstract summary: We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
- Score: 20.8603653664403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been an increased interest in applying deep neural networks to
automatically interpret and analyze the 12-lead electrocardiogram (ECG). The
current paradigms with machine learning methods are often limited by the amount
of labeled data. This phenomenon is particularly problematic for
clinically-relevant data, where labeling at scale can be time-consuming and
costly in terms of the specialized expertise and human effort required.
Moreover, deep learning classifiers may be vulnerable to adversarial examples
and perturbations, which could have catastrophic consequences, for example,
when applied in the context of medical treatment, clinical trials, or insurance
claims. In this paper, we propose a physiologically-inspired data augmentation
method to improve performance and increase the robustness of heart disease
detection based on ECG signals. We obtain augmented samples by perturbing the
data distribution towards other classes along the geodesic in Wasserstein
space. To better utilize domain-specific knowledge, we design a ground metric
that recognizes the difference between ECG signals based on physiologically
determined features. Learning from 12-lead ECG signals, our model is able to
distinguish five categories of cardiac conditions. Our results demonstrate
improvements in accuracy and robustness, reflecting the effectiveness of our
data augmentation method.
Related papers
- SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram [2.2842904085777045]
We introduce ST-MEM (S-Temporal Masked Electrocardiogram Modeling), designed to learntemporal features by reconstructing 12-lead ECG data.
ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia.
arXiv Detail & Related papers (2024-02-02T10:04:13Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
We introduce some rules into convolutional neural networks, which help present clinical knowledge to deep learning based ECG analysis.
Our new approach considerably outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2022-06-16T04:42:57Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
We investigate the issues related to applying a Deep Learning model on heterogeneous datasets.
We show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions.
We then evaluate the use of Transfer Learning to adapt the model to the different datasets.
arXiv Detail & Related papers (2021-10-26T14:26:55Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.