Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets
- URL: http://arxiv.org/abs/2110.13732v1
- Date: Tue, 26 Oct 2021 14:26:55 GMT
- Title: Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets
- Authors: Andrea Bizzego, Giulio Gabrieli, Michelle Jin-Yee Neoh and Gianluca
Esposito
- Abstract summary: We investigate the issues related to applying a Deep Learning model on heterogeneous datasets.
We show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions.
We then evaluate the use of Transfer Learning to adapt the model to the different datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) have greatly contributed to bioelectric signals
processing, in particular to extract physiological markers. However, the
efficacy and applicability of the results proposed in the literature is often
constrained to the population represented by the data used to train the models.
In this study, we investigate the issues related to applying a DL model on
heterogeneous datasets. In particular, by focusing on heart beat detection from
Electrocardiogram signals (ECG), we show that the performance of a model
trained on data from healthy subjects decreases when applied to patients with
cardiac conditions and to signals collected with different devices. We then
evaluate the use of Transfer Learning (TL) to adapt the model to the different
datasets. In particular, we show that the classification performance is
improved, even with datasets with a small sample size. These results suggest
that a greater effort should be made towards generalizability of DL models
applied on bioelectric signals, in particular by retrieving more representative
datasets.
Related papers
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - On the Generalizability of ECG-based Stress Detection Models [4.592950581802712]
We explore the generalization capabilities of Electrocardiogram (ECG)-based deep learning models and models based on Heart Rate Variability (HRV) features.
To the best of our knowledge, this is the first work to compare the cross-dataset generalizability between ECG-based deep learning models and HRV models.
arXiv Detail & Related papers (2022-10-12T14:12:04Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift [0.0]
We propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking.
We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns.
Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.
arXiv Detail & Related papers (2022-07-31T16:27:50Z) - Core-set Selection Using Metrics-based Explanations (CSUME) for
multiclass ECG [2.0520503083305073]
We show how a selection of good quality data improves deep learning model performance.
Our experimental results show a 9.67% and 8.69% precision and recall improvement with a significant training data volume reduction of 50%.
arXiv Detail & Related papers (2022-05-28T19:36:28Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.