Connection Reduction Is All You Need
- URL: http://arxiv.org/abs/2208.01424v1
- Date: Tue, 2 Aug 2022 13:00:35 GMT
- Title: Connection Reduction Is All You Need
- Authors: Rui-Yang Ju, Jen-Shiun Chiang
- Abstract summary: Empirical research shows that simply stacking convolutional layers does not make the network train better.
We propose two new algorithms to connect layers.
ShortNet1 has a 5% lower test error rate and 25% faster inference time than Baseline.
- Score: 0.10878040851637998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNN) increase depth by stacking convolutional
layers, and deeper network models perform better in image recognition.
Empirical research shows that simply stacking convolutional layers does not
make the network train better, and skip connection (residual learning) can
improve network model performance. For the image classification task, models
with global densely connected architectures perform well in large datasets like
ImageNet, but are not suitable for small datasets such as CIFAR-10 and SVHN.
Different from dense connections, we propose two new algorithms to connect
layers. Baseline is a densely connected network, and the networks connected by
the two new algorithms are named ShortNet1 and ShortNet2 respectively. The
experimental results of image classification on CIFAR-10 and SVHN show that
ShortNet1 has a 5% lower test error rate and 25% faster inference time than
Baseline. ShortNet2 speeds up inference time by 40% with less loss in test
accuracy.
Related papers
- Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - ThreshNet: An Efficient DenseNet using Threshold Mechanism to Reduce
Connections [1.2542322096299672]
We propose a new network architecture using threshold mechanism to further optimize the method of connections.
ThreshNet achieves up to 60% reduction in inference time compared to DenseNet, and up to 35% faster training speed and 20% reduction in error rate.
arXiv Detail & Related papers (2022-01-09T13:52:16Z) - Towards Lossless Binary Convolutional Neural Networks Using Piecewise
Approximation [4.023728681102073]
CNNs can significantly reduce the number of arithmetic operations and the size of memory storage.
However, the accuracy degradation of single and multiple binary CNNs is unacceptable for modern architectures.
We propose a Piecewise Approximation scheme for multiple binary CNNs which lessens accuracy loss by approximating full precision weights and activations.
arXiv Detail & Related papers (2020-08-08T13:32:33Z) - Adjoined Networks: A Training Paradigm with Applications to Network
Compression [3.995047443480282]
We introduce Adjoined Networks, or AN, a learning paradigm that trains both the original base network and the smaller compressed network together.
Using ResNet-50 as the base network, AN achieves 71.8% top-1 accuracy with only 1.8M parameters and 1.6 GFLOPs on the ImageNet data-set.
We propose Differentiable Adjoined Networks (DAN), a training paradigm that augments AN by using neural architecture search to jointly learn both the width and the weights for each layer of the smaller network.
arXiv Detail & Related papers (2020-06-10T02:48:16Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Improved Residual Networks for Image and Video Recognition [98.10703825716142]
Residual networks (ResNets) represent a powerful type of convolutional neural network (CNN) architecture.
We show consistent improvements in accuracy and learning convergence over the baseline.
Our proposed approach allows us to train extremely deep networks, while the baseline shows severe optimization issues.
arXiv Detail & Related papers (2020-04-10T11:09:50Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z) - Knapsack Pruning with Inner Distillation [11.04321604965426]
We propose a novel pruning method that optimize the final accuracy of the pruned network.
We prune the network channels while maintaining the high-level structure of the network.
Our method leads to state-of-the-art pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones.
arXiv Detail & Related papers (2020-02-19T16:04:48Z) - Convolutional Networks with Dense Connectivity [59.30634544498946]
We introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion.
For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers.
We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks.
arXiv Detail & Related papers (2020-01-08T06:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.