論文の概要: Differentially Private Vertical Federated Clustering
- arxiv url: http://arxiv.org/abs/2208.01700v2
- Date: Fri, 31 Mar 2023 02:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 20:44:52.736349
- Title: Differentially Private Vertical Federated Clustering
- Title(参考訳): 差動的にプライベートな垂直フェデレーションクラスタリング
- Authors: Zitao Li, Tianhao Wang, Ninghui Li
- Abstract要約: 多くのアプリケーションでは、複数のパーティが同じユーザのセットに関するプライベートデータを持っているが、非結合な属性のセットについてである。
データ対象者のプライバシーを保護しながらモデル学習を可能にするためには、垂直連合学習(VFL)技術が必要である。
本論文で提案するアルゴリズムは, 個人用垂直結合型K平均クラスタリングのための最初の実用的な解法である。
- 参考スコア(独自算出の注目度): 13.27934054846057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications, multiple parties have private data regarding the same
set of users but on disjoint sets of attributes, and a server wants to leverage
the data to train a model. To enable model learning while protecting the
privacy of the data subjects, we need vertical federated learning (VFL)
techniques, where the data parties share only information for training the
model, instead of the private data. However, it is challenging to ensure that
the shared information maintains privacy while learning accurate models. To the
best of our knowledge, the algorithm proposed in this paper is the first
practical solution for differentially private vertical federated k-means
clustering, where the server can obtain a set of global centers with a provable
differential privacy guarantee. Our algorithm assumes an untrusted central
server that aggregates differentially private local centers and membership
encodings from local data parties. It builds a weighted grid as the synopsis of
the global dataset based on the received information. Final centers are
generated by running any k-means algorithm on the weighted grid. Our approach
for grid weight estimation uses a novel, light-weight, and differentially
private set intersection cardinality estimation algorithm based on the
Flajolet-Martin sketch. To improve the estimation accuracy in the setting with
more than two data parties, we further propose a refined version of the weights
estimation algorithm and a parameter tuning strategy to reduce the final
k-means utility to be close to that in the central private setting. We provide
theoretical utility analysis and experimental evaluation results for the
cluster centers computed by our algorithm and show that our approach performs
better both theoretically and empirically than the two baselines based on
existing techniques.
- Abstract(参考訳): 多くのアプリケーションでは、複数のパーティが同じユーザセットに関するプライベートデータを持っているが、非結合な属性セットで、サーバはモデルをトレーニングするためにデータを活用したいと考えている。
データのプライバシを保護しながらモデル学習を可能にするためには、データパーティがプライベートデータではなく、モデルをトレーニングするための情報のみを共有する垂直フェデレーション学習(vfl)技術が必要です。
しかし、正確なモデルを学習しながら共有情報がプライバシーを維持することは困難である。
本論文で提案するアルゴリズムは,サーバが証明可能なディファレンシャルプライバシ保証を備えたグローバルセンタのセットを取得可能な,非プライベートな垂直フェデレートk-meansクラスタリングに対する,最初の実用的なソリューションである。
このアルゴリズムは,信頼できない中央サーバを想定し,ローカルなデータパーティから個別のローカルセンタとメンバシップエンコーディングを集約する。
受信した情報に基づいてグローバルデータセットのシナプスとして重み付けされたグリッドを構築する。
最終中心は、重み付きグリッド上で任意のk平均アルゴリズムを実行することで生成される。
格子重み推定の手法は,フラジョレット・マーチンスケッチに基づく,新しい,軽量で,差分的にプライベートな交叉基数推定アルゴリズムを用いる。
さらに、2つ以上のデータパーティを持つ設定における推定精度を向上させるために、重み付け推定アルゴリズムの洗練されたバージョンとパラメータチューニング戦略を提案し、中央のプライベート設定でそれに近い最終的なk-meansユーティリティを減らす。
提案手法は,提案アルゴリズムによって計算されたクラスタセンターの理論的有用性解析と実験評価を行い,既存の手法に基づく2つのベースラインよりも理論的および実験的に優れた性能を示すことを示す。
関連論文リスト
- A Stochastic Optimization Framework for Private and Fair Learning From Decentralized Data [14.748203847227542]
プライベート・フェア・フェデレーション・ラーニング(FL)のための新しいアルゴリズムを開発した。
我々のアルゴリズムは、サイロ間レコードレベル差分プライバシー(ISRL-DP)を満たす。
実験では、さまざまなプライバシレベルにわたるアルゴリズムのトレードオフとして、最先端の公正性・正確性フレームワークが実証されている。
論文 参考訳(メタデータ) (2024-11-12T15:51:35Z) - Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
本稿では,フェデレート・ラーニング (FL) とクロスビュー・イメージ・ジオローカライゼーション (CVGL) 技術を組み合わせた方法論を提案する。
提案手法では, クライアントが粗い特徴抽出器のみを共有しながら, 局所環境に特有のきめ細かな特徴を保持する, 粗い特徴抽出器を実装している。
その結果,フェデレートCVGL法は,データプライバシを維持しつつ,集中的なトレーニングに近い性能を実現することができた。
論文 参考訳(メタデータ) (2024-11-07T13:25:52Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Graph Federated Learning Based on the Decentralized Framework [8.619889123184649]
グラフフェデレーション学習は主に古典的なフェデレーション学習フレームワーク、すなわちクライアントサーバーフレームワークに基づいている。
グラフフェデレーション学習に分散フレームワークを導入する。
提案手法の有効性を検証するため,提案手法をFedAvg,Fedprox,GCFL,GCFL+と比較した。
論文 参考訳(メタデータ) (2023-07-19T07:40:51Z) - Personalized Graph Federated Learning with Differential Privacy [6.282767337715445]
本稿では、分散接続されたサーバとそのエッジデバイスが協調してデバイスやクラスタ固有のモデルを学習する、パーソナライズされたグラフフェデレーション学習(PGFL)フレームワークを提案する。
本稿では、差分プライバシー、特にノイズシーケンスがモデル交換を行うゼロ集中差分プライバシーを利用するPGFL実装の変種について検討する。
分析の結果,このアルゴリズムは,ゼロ集中型差分プライバシーの観点から,全クライアントの局所的な差分プライバシを保証することがわかった。
論文 参考訳(メタデータ) (2023-06-10T09:52:01Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。