Adapting Triplet Importance of Implicit Feedback for Personalized
Recommendation
- URL: http://arxiv.org/abs/2208.01709v1
- Date: Tue, 2 Aug 2022 19:44:47 GMT
- Title: Adapting Triplet Importance of Implicit Feedback for Personalized
Recommendation
- Authors: Haolun Wu, Chen Ma, Yingxue Zhang, Xue Liu, Ruiming Tang, Mark Coates
- Abstract summary: Implicit feedback is frequently used for developing personalized recommendation services.
We propose a novel training framework named Triplet Importance Learning (TIL), which adaptively learns the importance score of training triplets.
We show that our proposed method outperforms the best existing models by 3-21% in terms of Recall@k for the top-k recommendation.
- Score: 43.85549591503592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit feedback is frequently used for developing personalized
recommendation services due to its ubiquity and accessibility in real-world
systems. In order to effectively utilize such information, most research adopts
the pairwise ranking method on constructed training triplets (user, positive
item, negative item) and aims to distinguish between positive items and
negative items for each user. However, most of these methods treat all the
training triplets equally, which ignores the subtle difference between
different positive or negative items. On the other hand, even though some other
works make use of the auxiliary information (e.g., dwell time) of user
behaviors to capture this subtle difference, such auxiliary information is hard
to obtain. To mitigate the aforementioned problems, we propose a novel training
framework named Triplet Importance Learning (TIL), which adaptively learns the
importance score of training triplets. We devise two strategies for the
importance score generation and formulate the whole procedure as a bilevel
optimization, which does not require any rule-based design. We integrate the
proposed training procedure with several Matrix Factorization (MF)- and Graph
Neural Network (GNN)-based recommendation models, demonstrating the
compatibility of our framework. Via a comparison using three real-world
datasets with many state-of-the-art methods, we show that our proposed method
outperforms the best existing models by 3-21\% in terms of Recall@k for the
top-k recommendation.
Related papers
- Dual Test-time Training for Out-of-distribution Recommender System [91.15209066874694]
We propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR.
In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model.
To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy.
arXiv Detail & Related papers (2024-07-22T13:27:51Z) - Improving Content Recommendation: Knowledge Graph-Based Semantic Contrastive Learning for Diversity and Cold-Start Users [5.224122150536595]
We propose a hybrid multi-task learning approach, training on user-item and item-item interactions.
Our approach allows the model to better understand the relationships between entities within the knowledge graph by utilizing semantic information from text.
arXiv Detail & Related papers (2024-03-27T15:11:00Z) - Improving One-class Recommendation with Multi-tasking on Various
Preference Intensities [1.8416014644193064]
In one-class recommendation, it's required to make recommendations based on users' implicit feedback.
We propose a multi-tasking framework taking various preference intensities of each signal from implicit feedback into consideration.
Our method performs better than state-of-the-art methods by a large margin on three large-scale real-world benchmark datasets.
arXiv Detail & Related papers (2024-01-18T18:59:55Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation [18.768030475943213]
We improve Active Learning for the problem of 3D pose estimation in a multi-view setting.
We develop a framework that allows us to efficiently extend existing single-view AL strategies.
We demonstrate additional performance gains by incorporating predicted pseudo-labels, which is a form of self-training.
arXiv Detail & Related papers (2021-12-27T14:34:25Z) - Revisiting SVD to generate powerful Node Embeddings for Recommendation
Systems [3.388509725285237]
We revisit the Singular Value Decomposition (SVD) of adjacency matrix for embedding generation of users and items.
We use a two-layer neural network on top of these embeddings to learn relevance between user-item pairs.
Inspired by the success of higher-order learning in GRL, we propose an extension of this method to include two-hop neighbors for SVD.
arXiv Detail & Related papers (2021-10-05T20:41:21Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.