Dual Test-time Training for Out-of-distribution Recommender System
- URL: http://arxiv.org/abs/2407.15620v1
- Date: Mon, 22 Jul 2024 13:27:51 GMT
- Title: Dual Test-time Training for Out-of-distribution Recommender System
- Authors: Xihong Yang, Yiqi Wang, Jin Chen, Wenqi Fan, Xiangyu Zhao, En Zhu, Xinwang Liu, Defu Lian,
- Abstract summary: We propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR.
In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model.
To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy.
- Score: 91.15209066874694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been widely applied in recommender systems, which has achieved revolutionary progress recently. However, most existing learning-based methods assume that the user and item distributions remain unchanged between the training phase and the test phase. However, the distribution of user and item features can naturally shift in real-world scenarios, potentially resulting in a substantial decrease in recommendation performance. This phenomenon can be formulated as an Out-Of-Distribution (OOD) recommendation problem. To address this challenge, we propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR. In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model, allowing the model to specially adapt to the shifting user and item features. To be specific, we propose a self-distillation task and a contrastive task to assist the model learning both the user's invariant interest preferences and the variant user/item characteristics during the test-time phase, thus facilitating a smooth adaptation to the shifting features. Furthermore, we provide theoretical analysis to support the rationale behind our dual test-time training framework. To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy. We conduct experiments on three datasets with various backbones. Comprehensive experimental results have demonstrated the effectiveness of DT3OR compared to other state-of-the-art baselines.
Related papers
- The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
We investigate the effectiveness of test-time training (TTT) as a mechanism for improving models' reasoning capabilities.
TTT significantly improves performance on ARC tasks, achieving up to 6x improvement in accuracy compared to base fine-tuned models.
Our findings suggest that explicit symbolic search is not the only path to improved abstract reasoning in neural language models.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR)
Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data.
During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task.
arXiv Detail & Related papers (2023-08-31T06:32:11Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
We find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning.
First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.
Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes.
arXiv Detail & Related papers (2023-01-30T15:54:00Z) - Adapting Triplet Importance of Implicit Feedback for Personalized
Recommendation [43.85549591503592]
Implicit feedback is frequently used for developing personalized recommendation services.
We propose a novel training framework named Triplet Importance Learning (TIL), which adaptively learns the importance score of training triplets.
We show that our proposed method outperforms the best existing models by 3-21% in terms of Recall@k for the top-k recommendation.
arXiv Detail & Related papers (2022-08-02T19:44:47Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - Learning Robust Recommender from Noisy Implicit Feedback [140.7090392887355]
We propose a new training strategy named Adaptive Denoising Training (ADT)
ADT adaptively prunes the noisy interactions by two paradigms (i.e., Truncated Loss and Reweighted Loss)
We consider extra feedback (e.g., rating) as auxiliary signal and propose three strategies to incorporate extra feedback into ADT.
arXiv Detail & Related papers (2021-12-02T12:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.