Deep Reinforcement Learning for Multi-Agent Interaction
- URL: http://arxiv.org/abs/2208.01769v1
- Date: Tue, 2 Aug 2022 21:55:56 GMT
- Title: Deep Reinforcement Learning for Multi-Agent Interaction
- Authors: Ibrahim H. Ahmed and Cillian Brewitt and Ignacio Carlucho and Filippos
Christianos and Mhairi Dunion and Elliot Fosong and Samuel Garcin and
Shangmin Guo and Balint Gyevnar and Trevor McInroe and Georgios Papoudakis
and Arrasy Rahman and Lukas Sch\"afer and Massimiliano Tamborski and Giuseppe
Vecchio and Cheng Wang and Stefano V. Albrecht
- Abstract summary: The Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control.
This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
- Score: 14.532965827043254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of autonomous agents which can interact with other agents to
accomplish a given task is a core area of research in artificial intelligence
and machine learning. Towards this goal, the Autonomous Agents Research Group
develops novel machine learning algorithms for autonomous systems control, with
a specific focus on deep reinforcement learning and multi-agent reinforcement
learning. Research problems include scalable learning of coordinated agent
policies and inter-agent communication; reasoning about the behaviours, goals,
and composition of other agents from limited observations; and sample-efficient
learning based on intrinsic motivation, curriculum learning, causal inference,
and representation learning. This article provides a broad overview of the
ongoing research portfolio of the group and discusses open problems for future
directions.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Responsible Emergent Multi-Agent Behavior [2.9370710299422607]
State of the art in Responsible AI has ignored one crucial point: human problems are multi-agent problems.
From driving in traffic to negotiating economic policy, human problem-solving involves interaction and the interplay of the actions and motives of multiple individuals.
This dissertation develops the study of responsible emergent multi-agent behavior.
arXiv Detail & Related papers (2023-11-02T21:37:32Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
This review considers the existing methods for determining intrinsic motivation based on the world model obtained by the agent.
The proposed unified framework describes the architecture of agents using a world model and intrinsic motivation to improve learning.
arXiv Detail & Related papers (2023-01-24T15:13:02Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
We investigate how the interaction between a human and a continually learning prediction agent develops as the agent develops competency.
We develop a virtual reality environment and a time-based prediction task wherein learned predictions from a reinforcement learning (RL) algorithm augment human predictions.
Our findings suggest that human trust of the system may be influenced by early interactions with the agent, and that trust in turn affects strategic behaviour.
arXiv Detail & Related papers (2021-12-14T22:46:44Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
We present the most common multiagent problem representations and their main challenges.
We identify five research areas that address one or more of these challenges.
We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach.
arXiv Detail & Related papers (2021-06-29T19:53:15Z) - Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short
Survey [21.311739361361717]
Developmental approaches argue that learning agents must generate, select and learn to solve their own problems.
Recent years have seen a convergence of developmental approaches and deep reinforcement learning (RL) methods, forming the new domain of developmental machine learning.
This paper proposes a typology of these methods at the intersection of deep RL and developmental approaches, surveys recent approaches and discusses future avenues.
arXiv Detail & Related papers (2020-12-17T18:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.