Large Language Model Agent: A Survey on Methodology, Applications and Challenges
- URL: http://arxiv.org/abs/2503.21460v1
- Date: Thu, 27 Mar 2025 12:50:17 GMT
- Title: Large Language Model Agent: A Survey on Methodology, Applications and Challenges
- Authors: Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang, Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu, Hanqing Zhao, Dacheng Tao, Philip S. Yu, Ming Zhang,
- Abstract summary: Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
- Score: 88.3032929492409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
Related papers
- Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.
As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.
This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
This survey consolidates recent research on (M)LLM-based GUI agents.<n>We identify key challenges and propose future research directions.<n>We hope this survey will inspire further advancements in the field of (M)LLM-based GUI agents.
arXiv Detail & Related papers (2024-11-07T17:28:10Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Leveraging Chemistry Foundation Models to Facilitate Structure Focused Retrieval Augmented Generation in Multi-Agent Workflows for Catalyst and Materials Design [0.0]
We show that chemistry foundation models can serve as a basis for enabling structure-focused, semantic chemistry information retrieval.<n>We also show the use of chemistry foundation models in conjunction with multi-modal models such as OpenCLIP.
arXiv Detail & Related papers (2024-08-21T17:25:45Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.<n>This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.<n>We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs)
We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence.
These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems.
arXiv Detail & Related papers (2023-08-18T21:42:47Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.