Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis
- URL: http://arxiv.org/abs/2208.01843v1
- Date: Wed, 3 Aug 2022 05:02:47 GMT
- Title: Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis
- Authors: Xiao Qi, David J. Foran, John L. Nosher, Ilker Hacihaliloglu
- Abstract summary: We study the effectiveness of self-supervised learning in the context of diagnosing COVID-19 disease from CXR images.
We deploy a cross-attention mechanism to learn information from both original CXR images and corresponding enhanced local phase CXR images.
We demonstrate the performance of the baseline self-supervised learning models can be further improved by leveraging the local phase-based enhanced CXR images.
- Score: 2.3513645401551333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The role of chest X-ray (CXR) imaging, due to being more cost-effective,
widely available, and having a faster acquisition time compared to CT, has
evolved during the COVID-19 pandemic. To improve the diagnostic performance of
CXR imaging a growing number of studies have investigated whether supervised
deep learning methods can provide additional support. However, supervised
methods rely on a large number of labeled radiology images, which is a
time-consuming and complex procedure requiring expert clinician input. Due to
the relative scarcity of COVID-19 patient data and the costly labeling process,
self-supervised learning methods have gained momentum and has been proposed
achieving comparable results to fully supervised learning approaches. In this
work, we study the effectiveness of self-supervised learning in the context of
diagnosing COVID-19 disease from CXR images. We propose a multi-feature Vision
Transformer (ViT) guided architecture where we deploy a cross-attention
mechanism to learn information from both original CXR images and corresponding
enhanced local phase CXR images. We demonstrate the performance of the baseline
self-supervised learning models can be further improved by leveraging the local
phase-based enhanced CXR images. By using 10\% labeled CXR scans, the proposed
model achieves 91.10\% and 96.21\% overall accuracy tested on total 35,483 CXR
images of healthy (8,851), regular pneumonia (6,045), and COVID-19 (18,159)
scans and shows significant improvement over state-of-the-art techniques. Code
is available https://github.com/endiqq/Multi-Feature-ViT
Related papers
- Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
We propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images.
We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection.
arXiv Detail & Related papers (2022-12-19T07:10:51Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.