Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift
- URL: http://arxiv.org/abs/2208.02011v1
- Date: Wed, 3 Aug 2022 12:31:31 GMT
- Title: Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift
- Authors: Yivan Zhang, Jindong Wang, Xing Xie, Masashi Sugiyama
- Abstract summary: Combinations of domains and labels are not observed during training but appear in the test environment.
We provide a unique formulation of the combination shift problem based on the concepts of homomorphism, equivariance, and a refined definition of disentanglement.
- Score: 91.38796390449504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems may encounter unexpected problems when the data
distribution changes in the deployment environment. A major reason is that
certain combinations of domains and labels are not observed during training but
appear in the test environment. Although various invariance-based algorithms
can be applied, we find that the performance gain is often marginal. To
formally analyze this issue, we provide a unique algebraic formulation of the
combination shift problem based on the concepts of homomorphism, equivariance,
and a refined definition of disentanglement. The algebraic requirements
naturally derive a simple yet effective method, referred to as equivariant
disentangled transformation (EDT), which augments the data based on the
algebraic structures of labels and makes the transformation satisfy the
equivariance and disentanglement requirements. Experimental results demonstrate
that invariance may be insufficient, and it is important to exploit the
equivariance structure in the combination shift problem.
Related papers
- Equivariant score-based generative models provably learn distributions with symmetries efficiently [7.90752151686317]
Empirical studies have demonstrated that incorporating symmetries into generative models can provide better generalization and sampling efficiency.
We provide the first theoretical analysis and guarantees of score-based generative models (SGMs) for learning distributions that are invariant with respect to some group symmetry.
arXiv Detail & Related papers (2024-10-02T05:14:28Z) - Almost Equivariance via Lie Algebra Convolutions [0.0]
We provide a definition of almost equivariance and give a practical method for encoding it in models.
Specifically, we define Lie algebra convolutions and demonstrate that they offer several benefits over Lie group convolutions.
We prove two existence theorems, one showing the existence of almost isometries within bounded distance of isometries of a manifold, and another showing the converse for Hilbert spaces.
arXiv Detail & Related papers (2023-10-19T21:31:11Z) - Banana: Banach Fixed-Point Network for Pointcloud Segmentation with
Inter-Part Equivariance [31.875925637190328]
In this paper, we present Banana, a Banach fixed-point network for equivariant segmentation with inter-part equivariance by construction.
Our key insight is to iteratively solve a fixed-point problem, where point-part assignment labels and per-part SE(3)-equivariance co-evolve simultaneously.
Our formulation naturally provides a strict definition of inter-part equivariance that generalizes to unseen inter-part configurations.
arXiv Detail & Related papers (2023-05-25T17:59:32Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input.
We propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss.
Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed self-supervised tasks.
arXiv Detail & Related papers (2023-03-08T08:11:26Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
We propose a measure of a classifier's output invariance in a local transformation neighborhood.
Our measure is simple to calculate, does not depend on the test point's true label, and can be applied even in out-of-domain (OOD) settings.
In experiments on benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our measure and actual OOD generalization.
arXiv Detail & Related papers (2022-07-05T14:55:16Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Commutative Lie Group VAE for Disentanglement Learning [96.32813624341833]
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data.
A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning.
Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
arXiv Detail & Related papers (2021-06-07T07:03:14Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.