Relaxing Equivariance Constraints with Non-stationary Continuous Filters
- URL: http://arxiv.org/abs/2204.07178v1
- Date: Thu, 14 Apr 2022 18:08:36 GMT
- Title: Relaxing Equivariance Constraints with Non-stationary Continuous Filters
- Authors: Tycho F.A. van der Ouderaa, David W. Romero, Mark van der Wilk
- Abstract summary: The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
- Score: 20.74154804898478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariances provide useful inductive biases in neural network modeling,
with the translation equivariance of convolutional neural networks being a
canonical example. Equivariances can be embedded in architectures through
weight-sharing and place symmetry constraints on the functions a neural network
can represent. The type of symmetry is typically fixed and has to be chosen in
advance. Although some tasks are inherently equivariant, many tasks do not
strictly follow such symmetries. In such cases, equivariance constraints can be
overly restrictive. In this work, we propose a parameter-efficient relaxation
of equivariance that can effectively interpolate between a (i) non-equivariant
linear product, (ii) a strict-equivariant convolution, and (iii) a
strictly-invariant mapping. The proposed parameterization can be thought of as
a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally
verify that soft equivariance leads to improved performance in terms of test
accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
Related papers
- Approximate Equivariance in Reinforcement Learning [35.04248486334824]
Equivariant neural networks have shown great success in reinforcement learning.
In many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate.
We develop approximately equivariant algorithms in reinforcement learning.
arXiv Detail & Related papers (2024-11-06T19:44:46Z) - A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs [5.141137421503899]
Steerable convolutional neural networks (SCNNs) enhance task performance by modelling geometric symmetries.
Yet, unknown or varying symmetries can lead to overconstrained weights and decreased performance.
This paper introduces a probabilistic method to learn the degree of equivariance in SCNNs.
arXiv Detail & Related papers (2024-06-06T10:45:19Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
We present a novel framework to overcome the limitations of equivariant architectures in learning functions with group symmetries.
We use an arbitrary base model such as anvariant or a transformer and symmetrize it to be equivariant to the given group.
Empirical tests show competitive results against tailored equivariant architectures.
arXiv Detail & Related papers (2023-06-05T13:40:54Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input.
We propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss.
Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed self-supervised tasks.
arXiv Detail & Related papers (2023-03-08T08:11:26Z) - Architectural Optimization over Subgroups for Equivariant Neural
Networks [0.0]
We propose equivariance relaxation morphism and $[G]$-mixed equivariant layer to operate with equivariance constraints on a subgroup.
We present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization.
arXiv Detail & Related papers (2022-10-11T14:37:29Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
Combinations of domains and labels are not observed during training but appear in the test environment.
We provide a unique formulation of the combination shift problem based on the concepts of homomorphism, equivariance, and a refined definition of disentanglement.
arXiv Detail & Related papers (2022-08-03T12:31:31Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.