Re-QGAN: an optimized adversarial quantum circuit learning framework
- URL: http://arxiv.org/abs/2208.02165v2
- Date: Tue, 6 Sep 2022 14:00:13 GMT
- Title: Re-QGAN: an optimized adversarial quantum circuit learning framework
- Authors: Sandra Nguemto, Vicente Leyton-Ortega
- Abstract summary: We propose a quantum generative adversarial network design that uses real Hilbert spaces as the framework for the generative model.
We encode classical information by the stereographic projection, which allows us to use the entire classical domain without normalization procedures.
This architecture improves state-of-the-art quantum generative adversarial performance while maintaining a shallow-depth quantum circuit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial learning represents a powerful technique for generating data
statistics. Its successful implementation in quantum computational platforms is
not straightforward due to limitations in connectivity, quantum operation
fidelity, and limited access to the quantum processor for statistically
relevant results. Constraining the number of quantum operations and providing a
design with a low compilation cost, we propose a quantum generative adversarial
network design that uses real Hilbert spaces as the framework for the
generative model and a novel strategy to encode classical information into the
quantum framework. We consider quantum generator and discriminator
architectures based on a variational quantum circuit. We encode classical
information by the stereographic projection, which allows us to use the entire
classical domain without normalization procedures. For low-depth ans\"atze
designs, we consider the real Hilbert space as the working space for the
quantum adversarial game. This architecture improves state-of-the-art quantum
generative adversarial performance while maintaining a shallow-depth quantum
circuit and a reduced parameter set. We tested our design in a low resource
regime, generating handwritten digits with the MNIST as the reference dataset.
We could generate undetected data (digits) with just 15 epochs working in the
real Hilbert space of 2, 3, and 4 qubits. Our design uses native quantum
operations established in superconducting-based quantum processors and is
compatible with ion-trapped-based architectures.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum
State Fidelity [13.152233840194473]
We propose a novel architecture QuClassi, a quantum neural network for both binary and multi-class classification.
Powered by a quantum differentiation function along with a hybrid quantum-classic design, QuClassi encodes the data with a reduced number of qubits and generates the quantum circuit, pushing it to the quantum platform for the best states.
arXiv Detail & Related papers (2021-03-21T05:28:37Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.