Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis
- URL: http://arxiv.org/abs/2307.08969v1
- Date: Tue, 18 Jul 2023 04:51:28 GMT
- Title: Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis
- Authors: Zhen Wen, Yihan Liu, Siwei Tan, Jieyi Chen, Minfeng Zhu, Dongming Han,
Jianwei Yin, Mingliang Xu, and Wei Chen
- Abstract summary: We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
- Score: 31.203764035373677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is a rapidly evolving field that enables exponential
speed-up over classical algorithms. At the heart of this revolutionary
technology are quantum circuits, which serve as vital tools for implementing,
analyzing, and optimizing quantum algorithms. Recent advancements in quantum
computing and the increasing capability of quantum devices have led to the
development of more complex quantum circuits. However, traditional quantum
circuit diagrams suffer from scalability and readability issues, which limit
the efficiency of analysis and optimization processes. In this research, we
propose a novel visualization approach for large-scale quantum circuits by
adopting semantic analysis to facilitate the comprehension of quantum circuits.
We first exploit meta-data and semantic information extracted from the
underlying code of quantum circuits to create component segmentations and
pattern abstractions, allowing for easier wrangling of massive circuit
diagrams. We then develop Quantivine, an interactive system for exploring and
understanding quantum circuits. A series of novel circuit visualizations are
designed to uncover contextual details such as qubit provenance, parallelism,
and entanglement. The effectiveness of Quantivine is demonstrated through two
usage scenarios of quantum circuits with up to 100 qubits and a formal user
evaluation with quantum experts. A free copy of this paper and all supplemental
materials are available at
https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Character Complexity: A Novel Measure for Quantum Circuit Analysis [0.0]
This paper introduces Character Complexity, a novel measure that bridges Group-theoretic concepts with practical quantum computing concerns.
I prove several key properties of character complexity and establish a surprising connection to the classical simulability of quantum circuits.
I present innovative visualization methods for character complexity, providing intuitive insights into the structure of quantum circuits.
arXiv Detail & Related papers (2024-08-19T01:58:54Z) - Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design [3.8425905067219492]
The paper presents a categorized catalog of quantum circuit ansatzes.
Each ansatz is described with details such as intent, motivation, applicability, circuit diagram, implementation, example, and see also.
Practical examples are provided to illustrate their application in quantum algorithm design.
arXiv Detail & Related papers (2024-05-08T12:44:37Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.