論文の概要: Estimating Visual Information From Audio Through Manifold Learning
- arxiv url: http://arxiv.org/abs/2208.02337v1
- Date: Wed, 3 Aug 2022 20:47:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:10:04.842538
- Title: Estimating Visual Information From Audio Through Manifold Learning
- Title(参考訳): 多様体学習による音声からの視覚情報推定
- Authors: Fabrizio Pedersoli, Dryden Wiebe, Amin Banitalebi, Yong Zhang and
Kwang Moo Yi
- Abstract要約: 音声信号のみを用いてシーンの視覚情報を抽出する新しい枠組みを提案する。
私たちのフレームワークはマニフォールド学習に基づいており、2つのステップから構成されています。
提案手法は,公開されている音声/視覚データセットを用いて,音声から有意義な画像を生成することができることを示す。
- 参考スコア(独自算出の注目度): 14.113590443352495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new framework for extracting visual information about a scene
only using audio signals. Audio-based methods can overcome some of the
limitations of vision-based methods i.e., they do not require "line-of-sight",
are robust to occlusions and changes in illumination, and can function as a
backup in case vision/lidar sensors fail. Therefore, audio-based methods can be
useful even for applications in which only visual information is of interest
Our framework is based on Manifold Learning and consists of two steps. First,
we train a Vector-Quantized Variational Auto-Encoder to learn the data manifold
of the particular visual modality we are interested in. Second, we train an
Audio Transformation network to map multi-channel audio signals to the latent
representation of the corresponding visual sample. We show that our method is
able to produce meaningful images from audio using a publicly available
audio/visual dataset. In particular, we consider the prediction of the
following visual modalities from audio: depth and semantic segmentation. We
hope the findings of our work can facilitate further research in visual
information extraction from audio. Code is available at:
https://github.com/ubc-vision/audio_manifold.
- Abstract(参考訳): 音声信号のみを用いてシーンの視覚情報を抽出する新しいフレームワークを提案する。
オーディオベースの手法は、視覚ベースの手法のいくつかの制限、すなわち「視線」を必要とせず、閉塞や照明の変化に対して堅牢であり、視覚/ライダーセンサーが故障した場合のバックアップとして機能する。
したがって,視覚情報のみを興味のあるアプリケーションにおいても,音声に基づく手法が有用であり,このフレームワークはマニフォールド学習をベースとしており,二つのステップから構成される。
まず、ベクトル量子化された変分オートエンコーダを訓練し、関心のある特定の視覚モダリティのデータ多様体を学ぶ。
第2に、マルチチャンネル音声信号を対応する視覚サンプルの潜在表現にマッピングするために、オーディオ変換ネットワークを訓練する。
提案手法は,音声/視覚データセットを用いて音声から有意義な画像を生成することができることを示す。
特に,音声の深度とセマンティックセグメンテーションによる次の視覚的モーダルの予測について考察する。
本研究の結果が,音声からの視覚情報抽出のさらなる研究に役立つことを期待する。
コードはhttps://github.com/ubc-vision/audio_manifold.com/で入手できる。
関連論文リスト
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
本稿では,視覚表現学習と視覚音声生成のギャップを埋める新しいフレームワークであるVision to Audio and Beyond(VAB)を紹介する。
VABは、事前訓練されたオーディオトークンライザと画像エンコーダを使用して、それぞれ音声トークンと視覚的特徴を取得する。
実験では,ビデオから高品質な音声を生成するためのVABの効率と,セマンティック・オーディオ・視覚的特徴を習得する能力について紹介した。
論文 参考訳(メタデータ) (2024-09-27T20:26:34Z) - AVFF: Audio-Visual Feature Fusion for Video Deepfake Detection [2.985620880452743]
本稿では,2段階のクロスモーダル学習法であるAVFF(Audio-Visual Feature Fusion)を提案する。
マルチモーダルな表現を抽出するために、コントラスト学習と自動符号化の目的を使い、新しい音声-視覚マスキングと特徴融合戦略を導入する。
我々は、FakeAVCelebデータセットの98.6%の精度と99.1%のAUCを報告し、現在のオーディオ・ビジュアル・オブ・ザ・アートをそれぞれ14.9%、9.9%上回った。
論文 参考訳(メタデータ) (2024-06-05T05:20:12Z) - Text-to-feature diffusion for audio-visual few-shot learning [59.45164042078649]
ビデオデータから学ぶことは難しいし、あまり研究されていないが、もっと安いセットアップだ。
3つのデータセットに対して,音声・視覚的数ショット映像分類ベンチマークを導入する。
AV-DIFFは,提案した音声・視覚的少数ショット学習のベンチマークにおいて,最先端の性能が得られることを示す。
論文 参考訳(メタデータ) (2023-09-07T17:30:36Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
我々は、各モデルコンポーネントの学習手順をスケジューリングして、オーディオ・視覚的モダリティを関連付けるモデルの設計を行う。
入力音声を視覚的特徴に変換し,事前学習した生成器を用いて画像を生成する。
VEGAS と VGGSound のデータセットは,従来の手法よりもかなりよい結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T16:01:50Z) - Audiovisual Masked Autoencoders [93.22646144125457]
我々は,音声視覚下層分類タスクにおいて,大幅な改善が達成できることを示す。
また,Epic Kitchens における最先端オーディオ映像の表現の伝達性について述べる。
論文 参考訳(メタデータ) (2022-12-09T17:34:53Z) - Audio-Visual Segmentation [47.10873917119006]
本稿では,AVS(Audio-visual segmentation)と呼ばれる新しい課題について検討する。
ゴールは、画像フレームの時点で音を生成するオブジェクトのピクセルレベルのマップを出力することである。
本研究では,可聴ビデオにおける音声オブジェクトに対する画素単位のアノテーションを提供するAVSBench(Audio-visual segmentation benchmark)を構築した。
論文 参考訳(メタデータ) (2022-07-11T17:50:36Z) - Bio-Inspired Audio-Visual Cues Integration for Visual Attention
Prediction [15.679379904130908]
視覚的注意予測(VAP)手法は、シーンを認識するための人間の選択的な注意機構をシミュレートする。
VAPタスクにはバイオインスパイアされたオーディオ・ビジュアル・キューの統合手法が提案されている。
実験は、DIEM、AVAD、Coutrot1、Coutrot2、SumMe、ETMDを含む6つの難しい視線追跡データセットで実施されている。
論文 参考訳(メタデータ) (2021-09-17T06:49:43Z) - AudioVisual Video Summarization [103.47766795086206]
ビデオ要約では、既存のアプローチは音声情報を無視しながら視覚情報を利用するだけだ。
本稿では,映像要約作業における音声情報と視覚情報を協調的に活用し,これを実現するためにAVRN(AudioVisual Recurrent Network)を開発することを提案する。
論文 参考訳(メタデータ) (2021-05-17T08:36:10Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
生音声波形から自己教師付き音声表現を学習する手法を提案する。
音声のみの自己スーパービジョン(情報的音響属性の予測)と視覚的自己スーパービジョン(音声から発話顔を生成する)を組み合わせることで生音声エンコーダを訓練する。
本研究は,音声表現学習におけるマルチモーダル・セルフ・スーパービジョンの可能性を示すものである。
論文 参考訳(メタデータ) (2020-07-08T14:07:06Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
我々は,任意の個人の入力音声を,潜在的に無限に多くの出力スピーカのオーディオ視覚ストリームに変換する教師なしのアプローチを提案する。
我々は、Exemplar Autoencodersを用いて、特定のターゲット音声の音声、スタイリスティックな韻律、視覚的外観を学習する。
論文 参考訳(メタデータ) (2020-01-13T18:56:45Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
音声視覚音声の文脈における視覚的モダリティによって導かれる音声表現を学習するためのフレームワークを提案する。
音声クリップに対応する静止画像をアニメーション化し、音声セグメントの実際の映像にできるだけ近いよう、生成した映像を最適化する。
我々は,感情認識のための技術成果と,音声認識のための競争結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T14:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。