Semantic Segmentation of Fruits on Multi-sensor Fused Data in Natural
Orchards
- URL: http://arxiv.org/abs/2208.02483v1
- Date: Thu, 4 Aug 2022 06:17:07 GMT
- Title: Semantic Segmentation of Fruits on Multi-sensor Fused Data in Natural
Orchards
- Authors: Hanwen Kang, Xing Wang
- Abstract summary: We propose a deep-learning-based segmentation method to perform accurate semantic segmentation on fused data from a LiDAR-Camera visual sensor.
In the experiment, we comprehensively analyze the network setup when dealing with highly unstructured and noisy point clouds acquired from an apple orchard.
The experiment results show that the proposed method can perform accurate segmentation in real orchard environments.
- Score: 5.733573598657243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation is a fundamental task for agricultural robots to
understand the surrounding environments in natural orchards. The recent
development of the LiDAR techniques enables the robot to acquire accurate range
measurements of the view in the unstructured orchards. Compared to RGB images,
3D point clouds have geometrical properties. By combining the LiDAR and camera,
rich information on geometries and textures can be obtained. In this work, we
propose a deep-learning-based segmentation method to perform accurate semantic
segmentation on fused data from a LiDAR-Camera visual sensor. Two critical
problems are explored and solved in this work. The first one is how to
efficiently fused the texture and geometrical features from multi-sensor data.
The second one is how to efficiently train the 3D segmentation network under
severely imbalance class conditions. Moreover, an implementation of 3D
segmentation in orchards including LiDAR-Camera data fusion, data collection
and labelling, network training, and model inference is introduced in detail.
In the experiment, we comprehensively analyze the network setup when dealing
with highly unstructured and noisy point clouds acquired from an apple orchard.
Overall, our proposed method achieves 86.2% mIoU on the segmentation of fruits
on the high-resolution point cloud (100k-200k points). The experiment results
show that the proposed method can perform accurate segmentation in real orchard
environments.
Related papers
- View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and
Semantic-Aware Alignment [63.83894701779067]
We propose LCPS, the first LiDAR-Camera Panoptic network.
In our approach, we conduct LiDAR-Camera fusion in three stages.
Our fusion strategy improves about 6.9% PQ performance over the LiDAR-only baseline on NuScenes dataset.
arXiv Detail & Related papers (2023-08-03T10:57:58Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Efficient Urban-scale Point Clouds Segmentation with BEV Projection [0.0]
Most deep point clouds models directly conduct learning on 3D point clouds.
We propose to transfer the 3D point clouds to dense bird's-eye-view projection.
arXiv Detail & Related papers (2021-09-19T06:49:59Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
arXiv Detail & Related papers (2021-03-12T04:13:20Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2.7 $km2$, sampled from three Swiss cities.
The dataset is manually annotated for semantic segmentation with per-point labels, and is built using photogrammetry from images acquired by multirotors equipped with high-resolution cameras.
arXiv Detail & Related papers (2020-12-23T21:48:47Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections.
We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints.
arXiv Detail & Related papers (2020-04-06T11:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.