Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion
- URL: http://arxiv.org/abs/2103.07074v1
- Date: Fri, 12 Mar 2021 04:13:20 GMT
- Title: Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion
- Authors: Shi Qiu, Saeed Anwar and Nick Barnes
- Abstract summary: Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
- Score: 38.05362492645094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the prominence of current 3D sensors, a fine-grained analysis on the
basic point cloud data is worthy of further investigation. Particularly, real
point cloud scenes can intuitively capture complex surroundings in the real
world, but due to 3D data's raw nature, it is very challenging for machine
perception. In this work, we concentrate on the essential visual task, semantic
segmentation, for large-scale point cloud data collected in reality. On the one
hand, to reduce the ambiguity in nearby points, we augment their local context
by fully utilizing both geometric and semantic features in a bilateral
structure. On the other hand, we comprehensively interpret the distinctness of
the points from multiple resolutions and represent the feature map following an
adaptive fusion method at point-level for accurate semantic segmentation.
Further, we provide specific ablation studies and intuitive visualizations to
validate our key modules. By comparing with state-of-the-art networks on three
different benchmarks, we demonstrate the effectiveness of our network.
Related papers
- Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - Cross-Modal Information-Guided Network using Contrastive Learning for
Point Cloud Registration [17.420425069785946]
We present a novel Cross-Modal Information-Guided Network (CMIGNet) for point cloud registration.
We first incorporate the projected images from the point clouds and fuse the cross-modal features using the attention mechanism.
We employ two contrastive learning strategies, namely overlapping contrastive learning and cross-modal contrastive learning.
arXiv Detail & Related papers (2023-11-02T12:56:47Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
We extend data2vec to the point cloud domain and report encouraging results on several downstream tasks.
We propose point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds.
arXiv Detail & Related papers (2023-03-29T10:08:29Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - PnP-3D: A Plug-and-Play for 3D Point Clouds [38.05362492645094]
We propose a plug-and-play module, -3D, to improve the effectiveness of existing networks in analyzing point cloud data.
To thoroughly evaluate our approach, we conduct experiments on three standard point cloud analysis tasks.
In addition to achieving state-of-the-art results, we present comprehensive studies to demonstrate our approach's advantages.
arXiv Detail & Related papers (2021-08-16T23:59:43Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
Object detection from 3D point clouds remains a challenging task, though recent studies pushed the envelope with the deep learning techniques.
We propose a domain adaptation like approach to enhance the robustness of the feature representation.
Our simple yet effective approach fundamentally boosts the performance of 3D point cloud object detection and achieves the state-of-the-art results.
arXiv Detail & Related papers (2020-06-08T05:15:06Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.