論文の概要: Privacy-Preserving Chaotic Extreme Learning Machine with Fully
Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2208.02587v1
- Date: Thu, 4 Aug 2022 11:29:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:11:18.390974
- Title: Privacy-Preserving Chaotic Extreme Learning Machine with Fully
Homomorphic Encryption
- Title(参考訳): 完全同型暗号を用いたプライバシー保護型カオス極端学習機
- Authors: Syed Imtiaz Ahamed and Vadlamani Ravi
- Abstract要約: 完全同型暗号を用いたカオス・エクストリーム学習マシンとその暗号化形式を提案する。
提案手法は,ほとんどのデータセットにおいて,従来のエクストリーム学習マシンとよくあるいは類似している。
- 参考スコア(独自算出の注目度): 5.010425616264462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Machine Learning and Deep Learning Models require a lot of data for the
training process, and in some scenarios, there might be some sensitive data,
such as customer information involved, which the organizations might be
hesitant to outsource for model building. Some of the privacy-preserving
techniques such as Differential Privacy, Homomorphic Encryption, and Secure
Multi-Party Computation can be integrated with different Machine Learning and
Deep Learning algorithms to provide security to the data as well as the model.
In this paper, we propose a Chaotic Extreme Learning Machine and its encrypted
form using Fully Homomorphic Encryption where the weights and biases are
generated using a logistic map instead of uniform distribution. Our proposed
method has performed either better or similar to the Traditional Extreme
Learning Machine on most of the datasets.
- Abstract(参考訳): マシンラーニングとディープラーニングモデルには、トレーニングプロセスに多くのデータが必要です。いくつかのシナリオでは、関係する顧客情報など、モデル構築のアウトソースをためらうような、機密性の高いデータが存在するかも知れません。
差別化プライバシや同型暗号化、セキュアなマルチパーティ計算といったプライバシ保護技術は、さまざまな機械学習アルゴリズムやディープラーニングアルゴリズムと統合して、データとモデルにセキュリティを提供することができる。
本稿では,完全準同型暗号を用いたカオス型エクストリームラーニングマシンとその暗号化形式を提案し,一様分布ではなくロジスティックマップを用いて重みとバイアスを生成する。
提案手法は,ほとんどのデータセットにおいて,従来のエクストリーム学習マシンとよくあるいは類似している。
関連論文リスト
- Learning in the Dark: Privacy-Preserving Machine Learning using Function Approximation [1.8907108368038215]
Learning in the Darkは、暗号化された画像を高精度に分類できる、プライバシ保護機械学習モデルである。
暗号化データ上で直接計算を行うことで、高精度な予測を行うことができる。
論文 参考訳(メタデータ) (2023-09-15T06:45:58Z) - Privacy Side Channels in Machine Learning Systems [87.53240071195168]
プライバシサイドチャネルは、システムレベルのコンポーネントを利用してプライベート情報を抽出する攻撃である。
例えば、差分プライベートなトレーニングを適用する前にトレーニングデータを重複させることで、保証可能なプライバシ保証を完全に無効にするサイドチャネルが生成されることを示す。
さらに,学習データセットに含まれる秘密鍵を抽出するために,言語モデルを学習データ再生からブロックするシステムを利用することを示す。
論文 参考訳(メタデータ) (2023-09-11T16:49:05Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
プライバシー保護機械学習(ppML)のための堅牢な表現学習フレームワークを提案する。
提案手法は,多目的方式でオートエンコーダを訓練することを中心に,符号化部からの潜伏と学習の特徴を符号化形式として結合する。
提案したフレームワークでは、元のフォームを公開せずに、データを共有し、サードパーティツールを使用することができます。
論文 参考訳(メタデータ) (2023-09-08T16:41:25Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
プライバシとユーティリティのための情報理論スコアを導入し、不誠実なユーザの平均パフォーマンスを定量化する。
次に、ランダムなディープニューラルネットワークの使用を動機付ける符号化スキームのファミリーを構築する際のプリミティブを理論的に特徴づける。
論文 参考訳(メタデータ) (2023-03-31T18:03:53Z) - Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings [57.45332961252628]
データ共有プロセスにおけるプライバシ保護機械学習は、極めて重要なタスクである。
本稿では、オートエンコーダによる表現学習を用いて、プライバシーを保護した組込みデータを生成する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T17:36:58Z) - Privacy-Preserving Wavelet Wavelet Neural Network with Fully Homomorphic
Encryption [5.010425616264462]
プライバシ保護機械学習(PPML)は、プライバシ保護と、マシンラーニングモデルの構築に使用されるデータに対するセキュリティの提供を目的としている。
プライバシを保護すると同時に,モデルの効率を損なわないよう,完全同型暗号化ウェーブレットニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-05-26T10:40:31Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
本稿では、同相暗号を用いた医療データのためのプライバシー保護フェデレーション学習アルゴリズムを提案する。
提案アルゴリズムはセキュアなマルチパーティ計算プロトコルを用いて,ディープラーニングモデルを敵から保護する。
論文 参考訳(メタデータ) (2022-04-16T08:38:35Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Additively Homomorphical Encryption based Deep Neural Network for
Asymmetrically Collaborative Machine Learning [12.689643742151516]
機械学習の保存は、金融セクターにおけるさらなる適用を制限する制約を生み出す。
我々は、ある当事者がデータを所有するが、別の当事者がラベルのみを所有する新しい協調機械学習の実践的手法を提案する。
異なるデータセットに対する我々の実験は、精度のない安定したトレーニングだけでなく、100倍以上のスピードアップも示しています。
論文 参考訳(メタデータ) (2020-07-14T06:43:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。