Edge-centric Optimization of Multi-modal ML-driven eHealth Applications
- URL: http://arxiv.org/abs/2208.02597v1
- Date: Thu, 4 Aug 2022 11:51:34 GMT
- Title: Edge-centric Optimization of Multi-modal ML-driven eHealth Applications
- Authors: Anil Kanduri, Sina Shahhosseini, Emad Kasaeyan Naeini, Hamidreza
Alikhani, Pasi Liljeberg, Nikil Dutt, and Amir M. Rahmani
- Abstract summary: Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms.
We present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications.
- Score: 3.580536707578708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart eHealth applications deliver personalized and preventive digital
healthcare services to clients through remote sensing, continuous monitoring,
and data analytics. Smart eHealth applications sense input data from multiple
modalities, transmit the data to edge and/or cloud nodes, and process the data
with compute intensive machine learning (ML) algorithms. Run-time variations
with continuous stream of noisy input data, unreliable network connection,
computational requirements of ML algorithms, and choice of compute placement
among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth
applications. In this chapter, we present edge-centric techniques for optimized
compute placement, exploration of accuracy-performance trade-offs, and
cross-layered sense-compute co-optimization for ML-driven eHealth applications.
We demonstrate the practical use cases of smart eHealth applications in
everyday settings, through a sensor-edge-cloud framework for an objective pain
assessment case study.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
Meshfree simulation methods are emerging as compelling alternatives to conventional mesh-based approaches.
We provide a comprehensive overview of our research combining Machine Learning (ML) and Fraunhofer's MESHFREE software.
We introduce a novel ML-optimized approach, using active learning, regression trees, and visualization on MESHFREE simulation data.
arXiv Detail & Related papers (2024-03-20T15:29:59Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Cellular Network Capacity and Coverage Enhancement with MDT Data and
Deep Reinforcement Learning [2.2412873466757297]
This paper investigates a Minimization of Drive Tests (MDT)-driven Deep Reinforcement Learning (DRL) algorithm to optimize coverage and capacity by tuning antennas tilts on a cluster of cells from TIM's cellular network.
We jointly utilize MDT data, electromagnetic simulations, and network Key Performance indicators (KPIs) to define a simulated network environment for the training of a Deep Q-Network (DQN) agent.
arXiv Detail & Related papers (2022-02-22T15:16:53Z) - AMSER: Adaptive Multi-modal Sensing for Energy Efficient and Resilient
eHealth Systems [5.04685484754788]
Noisy inputs and motion artifacts during sensory data acquisition affect prediction accuracy and resilience of eHealth services.
We propose a closed-loop monitoring and control framework for multi-modal eHealth applications, AMSER, that can mitigate garbage-in garbage-out.
Our approach achieves up to 22% improvement in prediction accuracy and 5.6$times$ energy consumption reduction in the sensing phase.
arXiv Detail & Related papers (2021-12-13T00:52:33Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures.
In this work, we explore the implementation of cognitive data analysis algorithm on resource-constrained computing platforms.
We have assessed our approach on a use-case using a convolutional neural network to classify electrocardiogram traces.
arXiv Detail & Related papers (2021-06-11T16:49:10Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Interpretable Deep Learning for the Remote Characterisation of
Ambulation in Multiple Sclerosis using Smartphones [3.5547766520356547]
Deep convolutional neural networks (DCNN) applied to smartphone inertial sensor data were shown to better distinguish healthy from MS participant ambulation.
A transfer learning (TL) model from similar large open-source datasets was proposed.
A lack of transparency of "black-box" deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications.
arXiv Detail & Related papers (2021-03-16T16:15:49Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.