論文の概要: A Benchmark and Empirical Analysis for Replay Strategies in Continual
Learning
- arxiv url: http://arxiv.org/abs/2208.02660v1
- Date: Thu, 4 Aug 2022 13:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 12:51:30.402262
- Title: A Benchmark and Empirical Analysis for Replay Strategies in Continual
Learning
- Title(参考訳): 連続学習におけるリプレイ戦略のベンチマークと実証分析
- Authors: Qihan Yang, Fan Feng, Rosa Chan
- Abstract要約: 計算システムは一般に、タスクを逐次学習することができない。
本稿では,メモリ再生手法の詳細な評価を行う。
実験はすべて、さまざまなドメイン下で複数のデータセット上で実施される。
- 参考スコア(独自算出の注目度): 2.922007656878633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the capacity of continual learning, humans can continuously acquire
knowledge throughout their lifespan. However, computational systems are not, in
general, capable of learning tasks sequentially. This long-standing challenge
for deep neural networks (DNNs) is called catastrophic forgetting. Multiple
solutions have been proposed to overcome this limitation. This paper makes an
in-depth evaluation of the memory replay methods, exploring the efficiency,
performance, and scalability of various sampling strategies when selecting
replay data. All experiments are conducted on multiple datasets under various
domains. Finally, a practical solution for selecting replay methods for various
data distributions is provided.
- Abstract(参考訳): 継続的学習の能力により、人間は生涯を通じて知識を継続的に得ることができる。
しかし、一般に、計算システムはタスクを逐次学習することができない。
ディープニューラルネットワーク(DNN)のこの長年にわたる課題は、破滅的な忘れ方と呼ばれる。
この制限を克服するために複数の解決策が提案されている。
本稿では,メモリリプレイ手法の詳細な評価を行い,リプレイデータ選択時の各種サンプリング戦略の効率,性能,スケーラビリティについて検討する。
実験はすべて、さまざまなドメイン下の複数のデータセットで行われます。
最後に、様々なデータ分布に対する再生方法を選択するための実用的なソリューションを提供する。
関連論文リスト
- Watch Your Step: Optimal Retrieval for Continual Learning at Scale [1.7265013728931]
連続学習では、モデルは古いタスクと新しいタスクの間の干渉を最小限にしながら、時間とともに漸進的に学習する。
継続的学習における最も広く使われているアプローチの1つは、リプレイと呼ばれる。
本稿では,単純で独立したクラス選択型プリミティブとサンプル選択型プリミティブによって分類された選択的検索戦略を評価するためのフレームワークを提案する。
本稿では,重複したリプレイを防止し,損失値の低い新しいサンプルをリプレイなしで学習できるかどうかを探索する戦略を提案する。
論文 参考訳(メタデータ) (2024-04-16T17:35:35Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Dealing with Cross-Task Class Discrimination in Online Continual
Learning [54.31411109376545]
本稿では,クラスインクリメンタルラーニング(CIL)における新たな課題について論じる。
新しいタスクのクラスと古いタスクの間の決定境界を、古いタスクデータへの(あるいは制限された)アクセスなしで設定する方法。
リプレイ方式では、前のタスクから少量のデータ(再生データ)を節約する。現在のタスクデータのバッチが到着すると、システムは、新しいデータとサンプルデータとを共同でトレーニングする。
本稿では,リプレイ手法には動的トレーニングバイアスの問題があり,CTCD問題の解法におけるリプレイデータの有効性を低下させる。
論文 参考訳(メタデータ) (2023-05-24T02:52:30Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Practical Recommendations for Replay-based Continual Learning Methods [18.559132470835937]
継続学習では、以前の知識を忘れることなく、動的で非定常的なデータのストリームからモデルを学習する必要がある。
リプレイアプローチが最も効果的であることが実証的に証明されている。
論文 参考訳(メタデータ) (2022-03-19T12:44:44Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - vCLIMB: A Novel Video Class Incremental Learning Benchmark [53.90485760679411]
本稿では,ビデオ連続学習ベンチマークvCLIMBを紹介する。
vCLIMBは、ビデオ連続学習における深層モデルの破滅的な忘れを解析するための標準化されたテストベッドである。
本稿では,メモリベース連続学習法に適用可能な時間的整合性正規化を提案する。
論文 参考訳(メタデータ) (2022-01-23T22:14:17Z) - An Investigation of Replay-based Approaches for Continual Learning [79.0660895390689]
連続学習(CL)は機械学習(ML)の大きな課題であり、破滅的忘れ(CF)を伴わずに連続的に複数のタスクを学習する能力を記述する。
いくつかの解クラスが提案されており、その単純さと堅牢性から、いわゆるリプレイベースのアプローチは非常に有望であるように思われる。
連続学習におけるリプレイに基づくアプローチを実証的に検討し,応用の可能性を評価する。
論文 参考訳(メタデータ) (2021-08-15T15:05:02Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
生成的再生は、破滅的な忘れを和らげるために、以前のタスクの擬似データを生成し再生する有望な戦略である。
生成モデルを用いて垂直層の特徴を再現することを提案する; 2) 自己監督型補助タスクを活用して特徴の安定性をさらに向上する。
いくつかのデータセットにおける実験結果から,我々の手法は常に強力なOWMよりも大幅に改善されていることが分かる。
論文 参考訳(メタデータ) (2020-05-07T13:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。