Single-view 3D Mesh Reconstruction for Seen and Unseen Categories
- URL: http://arxiv.org/abs/2208.02676v2
- Date: Sat, 3 Jun 2023 07:37:08 GMT
- Title: Single-view 3D Mesh Reconstruction for Seen and Unseen Categories
- Authors: Xianghui Yang, Guosheng Lin, Luping Zhou
- Abstract summary: Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
- Score: 69.29406107513621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-view 3D object reconstruction is a fundamental and challenging
computer vision task that aims at recovering 3D shapes from single-view RGB
images. Most existing deep learning based reconstruction methods are trained
and evaluated on the same categories, and they cannot work well when handling
objects from novel categories that are not seen during training. Focusing on
this issue, this paper tackles Single-view 3D Mesh Reconstruction, to study the
model generalization on unseen categories and encourage models to reconstruct
objects literally. Specifically, we propose an end-to-end two-stage network,
GenMesh, to break the category boundaries in reconstruction. Firstly, we
factorize the complicated image-to-mesh mapping into two simpler mappings,
i.e., image-to-point mapping and point-to-mesh mapping, while the latter is
mainly a geometric problem and less dependent on object categories. Secondly,
we devise a local feature sampling strategy in 2D and 3D feature spaces to
capture the local geometry shared across objects to enhance model
generalization. Thirdly, apart from the traditional point-to-point supervision,
we introduce a multi-view silhouette loss to supervise the surface generation
process, which provides additional regularization and further relieves the
overfitting problem. The experimental results show that our method
significantly outperforms the existing works on the ShapeNet and Pix3D under
different scenarios and various metrics, especially for novel objects. The
project link is https://github.com/Wi-sc/GenMesh.
Related papers
- Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123 is a novel framework for part-aware 3D reconstruction from a single-view image.
We introduce contrastive learning into a neural rendering framework to learn a part-aware feature space.
A clustering-based algorithm is also developed to automatically derive 3D part segmentation results from the reconstructed models.
arXiv Detail & Related papers (2024-05-27T07:10:21Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction [57.805334118057665]
We propose REFINE, a postprocessing mesh refinement step that can be easily integrated into the pipeline of any black-box method in the literature.
At test time, REFINE optimize a network per mesh instance, to encourage consistency between the mesh and the given object view.
arXiv Detail & Related papers (2021-08-23T03:28:47Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
We build on advances in deep learning to reconstruct the shape of a single object given only one RBG image as input.
We propose three extensions: (1) ray-traced skip connections that propagate local 2D information to the output 3D volume in a physically correct manner; (2) a hybrid 3D volume representation that enables building translation equivariant models; and (3) a reconstruction loss tailored to capture overall object geometry.
We reconstruct all objects jointly in one pass, producing a coherent reconstruction, where all objects live in a single consistent 3D coordinate frame relative to the camera and they do not intersect in 3D space.
arXiv Detail & Related papers (2020-04-27T17:53:07Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z) - Self-supervised Single-view 3D Reconstruction via Semantic Consistency [142.71430568330172]
We learn a self-supervised, single-view 3D reconstruction model that predicts the shape, texture and camera pose of a target object.
The proposed method does not necessitate 3D supervision, manually annotated keypoints, multi-view images of an object or a prior 3D template.
arXiv Detail & Related papers (2020-03-13T20:29:01Z) - STD-Net: Structure-preserving and Topology-adaptive Deformation Network
for 3D Reconstruction from a Single Image [27.885717341244014]
3D reconstruction from a single view image is a long-standing prob-lem in computer vision.
In this paper, we propose a novel methodcalled STD-Net to reconstruct the 3D models utilizing the mesh representation.
Experimental results on the images from ShapeNet show that ourproposed STD-Net has better performance than other state-of-the-art methods onreconstructing 3D objects.
arXiv Detail & Related papers (2020-03-07T11:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.