Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction
- URL: http://arxiv.org/abs/2108.09911v1
- Date: Mon, 23 Aug 2021 03:28:47 GMT
- Title: Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction
- Authors: Brandon Leung, Chih-Hui Ho, Nuno Vasconcelos
- Abstract summary: We propose REFINE, a postprocessing mesh refinement step that can be easily integrated into the pipeline of any black-box method in the literature.
At test time, REFINE optimize a network per mesh instance, to encourage consistency between the mesh and the given object view.
- Score: 57.805334118057665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much recent progress has been made in reconstructing the 3D shape of an
object from an image of it, i.e. single view 3D reconstruction. However, it has
been suggested that current methods simply adopt a "nearest-neighbor" strategy,
instead of genuinely understanding the shape behind the input image. In this
paper, we rigorously show that for many state of the art methods, this issue
manifests as (1) inconsistencies between coarse reconstructions and input
images, and (2) inability to generalize across domains. We thus propose REFINE,
a postprocessing mesh refinement step that can be easily integrated into the
pipeline of any black-box method in the literature. At test time, REFINE
optimizes a network per mesh instance, to encourage consistency between the
mesh and the given object view. This, along with a novel combination of
regularizing losses, reduces the domain gap and achieves state of the art
performance. We believe that this novel paradigm is an important step towards
robust, accurate reconstructions, remaining relevant as new reconstruction
networks are introduced.
Related papers
- 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
Multi-view (MV) 3D reconstruction is a promising solution to fuse generated MV images into consistent 3D objects.
However, the generated images usually suffer from inconsistent lighting, misaligned geometry, and sparse views, leading to poor reconstruction quality.
We present a novel 3D reconstruction framework that leverages intrinsic decomposition guidance, transient-mono prior guidance, and view augmentation to cope with the three issues.
arXiv Detail & Related papers (2024-01-29T02:30:31Z) - SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction [2.2954246824369218]
3D image reconstruction from a limited number of 2D images has been a long-standing challenge in computer vision and image analysis.
We propose a shape-aware network based on diffusion models for 3D image reconstruction, named SADIR, to address these issues.
arXiv Detail & Related papers (2023-09-06T19:30:22Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving
Objects [115.71874459429381]
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image.
While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion.
arXiv Detail & Related papers (2021-06-16T13:18:08Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images [49.52782544649703]
We propose a novel approach to reconstruct 3D human body shapes based on a sparse set of RGBD frames.
The main challenge is how to robustly fuse these sparse frames into a canonical 3D model.
Our framework is flexible, with potential applications going beyond shape reconstruction.
arXiv Detail & Related papers (2020-06-05T18:53:36Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
This paper presents a new system to obtain dense object reconstructions along with 6-DoF poses from a single image.
We leverage recent advances in differentiable rendering (in particular, robotics) to close the loop with 3D reconstruction in camera frame.
arXiv Detail & Related papers (2020-04-25T20:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.