Explaining Classifiers Trained on Raw Hierarchical Multiple-Instance
Data
- URL: http://arxiv.org/abs/2208.02694v1
- Date: Thu, 4 Aug 2022 14:48:37 GMT
- Title: Explaining Classifiers Trained on Raw Hierarchical Multiple-Instance
Data
- Authors: Tom\'a\v{s} Pevn\'y and Viliam Lis\'y and Branislav Bo\v{s}ansk\'y and
Petr Somol and Michal P\v{e}chou\v{c}ek
- Abstract summary: A number of data sources have the natural form of structured data interchange formats (e.g. Multiple security logs in/XML format)
Existing methods, such as in Hierarchical Instance Learning (HMIL) allow learning from such data in their raw form.
By treating these models as sub-set selections problems, we demonstrate how interpretable explanations, with favourable properties, can be generated using computationally efficient algorithms.
We compare to an explanation technique adopted from graph neural networks showing an order of magnitude speed-up and higher-quality explanations.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning from raw data input, thus limiting the need for feature engineering,
is a component of many successful applications of machine learning methods in
various domains. While many problems naturally translate into a vector
representation directly usable in standard classifiers, a number of data
sources have the natural form of structured data interchange formats (e.g.,
security logs in JSON/XML format). Existing methods, such as in Hierarchical
Multiple Instance Learning (HMIL), allow learning from such data in their raw
form. However, the explanation of the classifiers trained on raw structured
data remains largely unexplored. By treating these models as sub-set selections
problems, we demonstrate how interpretable explanations, with favourable
properties, can be generated using computationally efficient algorithms. We
compare to an explanation technique adopted from graph neural networks showing
an order of magnitude speed-up and higher-quality explanations.
Related papers
- Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Tensor feature hallucination for few-shot learning [17.381648488344222]
Few-shot classification addresses the challenge of classifying examples given limited supervision and limited data.
Previous works on synthetic data generation for few-shot classification focus on exploiting complex models.
We investigate how a simple and straightforward synthetic data generation method can be used effectively.
arXiv Detail & Related papers (2021-06-09T18:25:08Z) - Mill.jl and JsonGrinder.jl: automated differentiable feature extraction
for learning from raw JSON data [0.0]
Learning from raw data input is one of the key components of successful applications of machine learning methods.
Learning from raw data input is one of the key components of successful applications of machine learning methods.
arXiv Detail & Related papers (2021-05-19T13:02:10Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
This paper addresses the problem of training a classifier on a dataset with incomplete features.
We assume that different subsets of features (random or structured) are available at each data instance.
A new supervised learning method is developed to train a general classifier, using only a subset of features per sample.
arXiv Detail & Related papers (2020-11-28T02:20:39Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - An analysis on the use of autoencoders for representation learning:
fundamentals, learning task case studies, explainability and challenges [11.329636084818778]
In many machine learning tasks, learning a good representation of the data can be the key to building a well-performant solution.
We present a series of learning tasks: data embedding for visualization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation.
A solution is proposed for each task employing autoencoders as the only learning method.
arXiv Detail & Related papers (2020-05-21T08:41:57Z) - Laplacian Denoising Autoencoder [114.21219514831343]
We propose to learn data representations with a novel type of denoising autoencoder.
The noisy input data is generated by corrupting latent clean data in the gradient domain.
Experiments on several visual benchmarks demonstrate that better representations can be learned with the proposed approach.
arXiv Detail & Related papers (2020-03-30T16:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.