Globally Consistent Video Depth and Pose Estimation with Efficient
Test-Time Training
- URL: http://arxiv.org/abs/2208.02709v1
- Date: Thu, 4 Aug 2022 15:12:03 GMT
- Title: Globally Consistent Video Depth and Pose Estimation with Efficient
Test-Time Training
- Authors: Yao-Chih Lee, Kuan-Wei Tseng, Guan-Sheng Chen and Chu-Song Chen
- Abstract summary: We present GCVD, a globally consistent method for learning-based video structure from motion (SfM)
GCVD integrates a compact pose graph into the CNN-based optimization to achieve globally consistent from an effective selection mechanism.
Experimental results show that GCVD outperforms the state-of-the-art methods on both depth and pose estimation.
- Score: 15.46056322267856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dense depth and pose estimation is a vital prerequisite for various video
applications. Traditional solutions suffer from the robustness of sparse
feature tracking and insufficient camera baselines in videos. Therefore, recent
methods utilize learning-based optical flow and depth prior to estimate dense
depth. However, previous works require heavy computation time or yield
sub-optimal depth results. We present GCVD, a globally consistent method for
learning-based video structure from motion (SfM) in this paper. GCVD integrates
a compact pose graph into the CNN-based optimization to achieve globally
consistent estimation from an effective keyframe selection mechanism. It can
improve the robustness of learning-based methods with flow-guided keyframes and
well-established depth prior. Experimental results show that GCVD outperforms
the state-of-the-art methods on both depth and pose estimation. Besides, the
runtime experiments reveal that it provides strong efficiency in both short-
and long-term videos with global consistency provided.
Related papers
- Learning Temporally Consistent Video Depth from Video Diffusion Priors [57.929828486615605]
This work addresses the challenge of video depth estimation.
We reformulate the prediction task into a conditional generation problem.
This allows us to leverage the prior knowledge embedded in existing video generation models.
arXiv Detail & Related papers (2024-06-03T16:20:24Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input.
We plan to do intrinsic camera parameters during training and apply weather augmentations to further generalize our model.
arXiv Detail & Related papers (2023-04-14T07:14:08Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [94.90294600817215]
We propose a novel neural architecture search (NAS) method, termed ViPNAS, to search networks in both spatial and temporal levels for fast online video pose estimation.
In the spatial level, we carefully design the search space with five different dimensions including network depth, width, kernel size, group number, and attentions.
In the temporal level, we search from a series of temporal feature fusions to optimize the total accuracy and speed across multiple video frames.
arXiv Detail & Related papers (2021-05-21T06:36:40Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video.
Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details.
In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations.
arXiv Detail & Related papers (2020-12-10T18:59:48Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
We propose a novel self-supervised joint learning framework for depth estimation.
The proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
arXiv Detail & Related papers (2020-06-17T13:56:59Z) - Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [36.414471128890284]
We tackle the essential problem of scale inconsistency for self-supervised joint depth-pose learning.
Most existing methods assume that a consistent scale of depth and pose can be learned across all input samples.
We propose a novel system that explicitly disentangles scale from the network estimation.
arXiv Detail & Related papers (2020-04-03T00:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.