Towards Better Generalization: Joint Depth-Pose Learning without PoseNet
- URL: http://arxiv.org/abs/2004.01314v2
- Date: Fri, 3 Sep 2021 09:45:39 GMT
- Title: Towards Better Generalization: Joint Depth-Pose Learning without PoseNet
- Authors: Wang Zhao, Shaohui Liu, Yezhi Shu, Yong-Jin Liu
- Abstract summary: We tackle the essential problem of scale inconsistency for self-supervised joint depth-pose learning.
Most existing methods assume that a consistent scale of depth and pose can be learned across all input samples.
We propose a novel system that explicitly disentangles scale from the network estimation.
- Score: 36.414471128890284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we tackle the essential problem of scale inconsistency for
self-supervised joint depth-pose learning. Most existing methods assume that a
consistent scale of depth and pose can be learned across all input samples,
which makes the learning problem harder, resulting in degraded performance and
limited generalization in indoor environments and long-sequence visual odometry
application. To address this issue, we propose a novel system that explicitly
disentangles scale from the network estimation. Instead of relying on PoseNet
architecture, our method recovers relative pose by directly solving fundamental
matrix from dense optical flow correspondence and makes use of a two-view
triangulation module to recover an up-to-scale 3D structure. Then, we align the
scale of the depth prediction with the triangulated point cloud and use the
transformed depth map for depth error computation and dense reprojection check.
Our whole system can be jointly trained end-to-end. Extensive experiments show
that our system not only reaches state-of-the-art performance on KITTI depth
and flow estimation, but also significantly improves the generalization ability
of existing self-supervised depth-pose learning methods under a variety of
challenging scenarios, and achieves state-of-the-art results among
self-supervised learning-based methods on KITTI Odometry and NYUv2 dataset.
Furthermore, we present some interesting findings on the limitation of
PoseNet-based relative pose estimation methods in terms of generalization
ability. Code is available at https://github.com/B1ueber2y/TrianFlow.
Related papers
- Scale Propagation Network for Generalizable Depth Completion [16.733495588009184]
We propose a novel scale propagation normalization (SP-Norm) method to propagate scales from input to output.
We also develop a new network architecture based on SP-Norm and the ConvNeXt V2 backbone.
Our model consistently achieves the best accuracy with faster speed and lower memory when compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T03:53:06Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
We present a novel learning-based alignment network for complex alignment scenes.
We validate our approach on the 3DMatch dataset and the KITTI odometry dataset.
arXiv Detail & Related papers (2021-11-15T08:27:21Z) - Geometry Uncertainty Projection Network for Monocular 3D Object
Detection [138.24798140338095]
We propose a Geometry Uncertainty Projection Network (GUP Net) to tackle the error amplification problem at both inference and training stages.
Specifically, a GUP module is proposed to obtains the geometry-guided uncertainty of the inferred depth.
At the training stage, we propose a Hierarchical Task Learning strategy to reduce the instability caused by error amplification.
arXiv Detail & Related papers (2021-07-29T06:59:07Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
Two-view structure-from-motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM.
We propose to revisit the problem of deep two-view SfM by leveraging the well-posedness of the classic pipeline.
Our method consists of 1) an optical flow estimation network that predicts dense correspondences between two frames; 2) a normalized pose estimation module that computes relative camera poses from the 2D optical flow correspondences, and 3) a scale-invariant depth estimation network that leverages epipolar geometry to reduce the search space, refine the dense correspondences, and estimate relative depth maps.
arXiv Detail & Related papers (2021-04-01T15:31:20Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - DF-VO: What Should Be Learnt for Visual Odometry? [33.379888882093965]
We design a simple yet robust Visual Odometry system by integrating multi-view geometry and deep learning on Depth and optical Flow.
Comprehensive ablation studies show the effectiveness of the proposed method, and extensive evaluation results show the state-of-the-art performance of our system.
arXiv Detail & Related papers (2021-03-01T11:50:39Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z) - Learning a Geometric Representation for Data-Efficient Depth Estimation
via Gradient Field and Contrastive Loss [29.798579906253696]
We propose a gradient-based self-supervised learning algorithm with momentum contrastive loss to help ConvNets extract the geometric information with unlabeled images.
Our method outperforms the previous state-of-the-art self-supervised learning algorithms and shows the efficiency of labeled data in triple.
arXiv Detail & Related papers (2020-11-06T06:47:19Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - DELTAS: Depth Estimation by Learning Triangulation And densification of
Sparse points [14.254472131009653]
Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation.
Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems.
We propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs.
arXiv Detail & Related papers (2020-03-19T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.