Improving Fuzzy-Logic based Map-Matching Method with Trajectory
Stay-Point Detection
- URL: http://arxiv.org/abs/2208.02881v1
- Date: Thu, 4 Aug 2022 20:41:13 GMT
- Title: Improving Fuzzy-Logic based Map-Matching Method with Trajectory
Stay-Point Detection
- Authors: Minoo Jafarlou, Omid Mahdi Ebadati E., Hassan Naderi
- Abstract summary: Most GPS trajectory datasets include stay-points irregularity, which makes map-matching algorithms mismatch trajectories to irrelevant streets.
We cluster stay-points in a trajectory dataset with DBSCAN and eliminate redundant data to improve the efficiency of the map-matching algorithm.
Our approach yields 27.39% data size reduction and 8.9% processing time reduction with the same accurate results as the previous fuzzy-logic based map-matching approach.
- Score: 3.093890460224435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The requirement to trace and process moving objects in the contemporary era
gradually increases since numerous applications quickly demand precise moving
object locations. The Map-matching method is employed as a preprocessing
technique, which matches a moving object point on a corresponding road.
However, most of the GPS trajectory datasets include stay-points irregularity,
which makes map-matching algorithms mismatch trajectories to irrelevant
streets. Therefore, determining the stay-point region in GPS trajectory
datasets results in better accurate matching and more rapid approaches. In this
work, we cluster stay-points in a trajectory dataset with DBSCAN and eliminate
redundant data to improve the efficiency of the map-matching algorithm by
lowering processing time. We reckoned our proposed method's performance and
exactness with a ground truth dataset compared to a fuzzy-logic based
map-matching algorithm. Fortunately, our approach yields 27.39% data size
reduction and 8.9% processing time reduction with the same accurate results as
the previous fuzzy-logic based map-matching approach.
Related papers
- NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot [1.0550841723235613]
We propose a full navigation pipeline based on topological map and two-level path planning.
The pipeline localizes in the graph by matching neural network descriptors and 2D projections of the input point clouds.
We test our approach in a large indoor photo-relaistic simulated environment and compare it to a metric map-based approach based on popular metric mapping method RTAB-MAP.
arXiv Detail & Related papers (2024-10-15T10:54:49Z) - Local All-Pair Correspondence for Point Tracking [59.76186266230608]
We introduce LocoTrack, a highly accurate and efficient model designed for the task of tracking any point (TAP) across video sequences.
LocoTrack achieves unmatched accuracy on all TAP-Vid benchmarks and operates at a speed almost 6 times faster than the current state-of-the-art.
arXiv Detail & Related papers (2024-07-22T06:49:56Z) - Performance Evaluation of GPS Trajectory Rasterization Methods [0.0]
GPS trajectory is an important data source which is used in traffic density detection, transport mode detection, mapping data.
While the data size increases, efficient representation of this type of data is becoming difficult to be used in these methods.
In this study, we evaluate GPS data trajectoryization using the spatial join functions of QGIS, PostGIS+QGIS, and our structured grid implementation coded in the Python programming language.
arXiv Detail & Related papers (2024-01-03T11:25:11Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - A Map-matching Algorithm with Extraction of Multi-group Information for
Low-frequency Data [9.476212160807549]
This paper designs a new map-matching method to make full use of "Big data"
We sort all data into four groups according to their spatial and temporal distance from the present matching probe.
We use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path.
arXiv Detail & Related papers (2022-09-18T08:09:17Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
This paper attacks the problem of language-guided navigation in a new perspective.
We use novel semantic navigation maps, which enables robots to carry out natural language instructions and move to a target position based on the map observations.
The proposed approach has noticeable performance gains, especially in long-distance navigation cases.
arXiv Detail & Related papers (2022-03-07T07:40:33Z) - Class agnostic moving target detection by color and location prediction
of moving area [11.326363150470204]
Moving target detection plays an important role in computer vision.
Recent algorithms such as deep learning-based convolutional neural networks have achieved high accuracy and real-time performance.
We propose a model free moving target detection algorithm.
arXiv Detail & Related papers (2021-06-24T12:34:58Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
We propose the first learning-based approach for detection and trajectory estimation of fast moving objects.
The proposed method first detects all fast moving objects as a truncated distance function to the trajectory.
For the sharp appearance estimation, we propose an energy minimization based deblurring.
arXiv Detail & Related papers (2020-12-15T11:05:34Z) - Automatic extraction of road intersection points from USGS historical
map series using deep convolutional neural networks [0.0]
Road intersections data have been used across different geospatial applications and analysis.
We employed the standard paradigm of using deep convolutional neural network for object detection task named region-based CNN.
Also, compared to the majority of traditional computer vision algorithms RCNN provides more accurate extraction.
arXiv Detail & Related papers (2020-07-14T23:51:15Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.