NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot
- URL: http://arxiv.org/abs/2410.11492v1
- Date: Tue, 15 Oct 2024 10:54:49 GMT
- Title: NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot
- Authors: Kirill Muravyev, Konstantin Yakovlev,
- Abstract summary: We propose a full navigation pipeline based on topological map and two-level path planning.
The pipeline localizes in the graph by matching neural network descriptors and 2D projections of the input point clouds.
We test our approach in a large indoor photo-relaistic simulated environment and compare it to a metric map-based approach based on popular metric mapping method RTAB-MAP.
- Score: 1.0550841723235613
- License:
- Abstract: Autonomous navigation of a mobile robot is a challenging task which requires ability of mapping, localization, path planning and path following. Conventional mapping methods build a dense metric map like an occupancy grid, which is affected by odometry error accumulation and consumes a lot of memory and computations in large environments. Another approach to mapping is the usage of topological properties, e.g. adjacency of locations in the environment. Topological maps are less prone to odometry error accumulation and high resources consumption, and also enable fast path planning because of the graph sparsity. Based on this idea, we proposed NavTopo - a full navigation pipeline based on topological map and two-level path planning. The pipeline localizes in the graph by matching neural network descriptors and 2D projections of the input point clouds, which significantly reduces memory consumption compared to metric and topological point cloud-based approaches. We test our approach in a large indoor photo-relaistic simulated environment and compare it to a metric map-based approach based on popular metric mapping method RTAB-MAP. The experimental results show that our topological approach significantly outperforms the metric one in terms of performance, keeping proper navigational efficiency.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching [42.74395278382559]
This paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations.
The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure.
We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot.
arXiv Detail & Related papers (2024-04-02T06:25:16Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
We address a practical yet challenging problem of training robot agents to navigate in an environment following a path described by some language instructions.
To achieve accurate and efficient navigation, it is critical to build a map that accurately represents both spatial location and the semantic information of the environment objects.
We propose a multi-granularity map, which contains both object fine-grained details (e.g., color, texture) and semantic classes, to represent objects more comprehensively.
arXiv Detail & Related papers (2022-10-14T04:23:27Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
This paper attacks the problem of language-guided navigation in a new perspective.
We use novel semantic navigation maps, which enables robots to carry out natural language instructions and move to a target position based on the map observations.
The proposed approach has noticeable performance gains, especially in long-distance navigation cases.
arXiv Detail & Related papers (2022-03-07T07:40:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Lightweight Object-level Topological Semantic Mapping and Long-term
Global Localization based on Graph Matching [19.706907816202946]
We present a novel lightweight object-level mapping and localization method with high accuracy and robustness.
We use object-level features with both semantic and geometric information to model landmarks in the environment.
Based on the proposed map, the robust localization is achieved by constructing a novel local semantic scene graph descriptor.
arXiv Detail & Related papers (2022-01-16T05:47:07Z) - Average Outward Flux Skeletons for Environment Mapping and Topology
Matching [15.93458380913065]
We consider how to extract a road map of an initially-unknown 2-dimensional environment via an online procedure that robustly computes a retraction of its boundaries.
The proposed algorithm results in smooth safe paths for the robot's navigation needs.
arXiv Detail & Related papers (2021-11-27T06:29:57Z) - Lifelong Topological Visual Navigation [16.41858724205884]
We propose a learning-based visual navigation method with graph update strategies that improve lifelong navigation performance over time.
We take inspiration from sampling-based planning algorithms to build image-based topological graphs, resulting in sparser graphs yet with higher navigation performance compared to baseline methods.
Unlike controllers that learn from fixed training environments, we show that our model can be finetuned using a relatively small dataset from the real-world environment where the robot is deployed.
arXiv Detail & Related papers (2021-10-16T06:16:14Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
The ability to recognize previously mapped locations is an essential feature for autonomous systems.
Unstructured planetary-like environments pose a major challenge to these systems due to the similarity of the terrain.
This paper presents a method to solve the loop closure problem using only spatial information.
arXiv Detail & Related papers (2020-09-01T04:41:40Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.