Creative Wand: A System to Study Effects of Communications in
Co-Creative Settings
- URL: http://arxiv.org/abs/2208.02886v1
- Date: Thu, 4 Aug 2022 20:56:40 GMT
- Title: Creative Wand: A System to Study Effects of Communications in
Co-Creative Settings
- Authors: Zhiyu Lin, Rohan Agarwal, Mark Riedl
- Abstract summary: Co-creative, mixed-initiative systems require user-centric means of influencing the algorithm.
Key questions in co-creative AI include: How can users express their creative intentions?
We introduce CREATIVE-WAND, a customizable framework for investigating co-creative mixed-initiative generation.
- Score: 9.356870107137093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent neural generation systems have demonstrated the potential for
procedurally generating game content, images, stories, and more. However, most
neural generation algorithms are "uncontrolled" in the sense that the user has
little say in creative decisions beyond the initial prompt specification.
Co-creative, mixed-initiative systems require user-centric means of influencing
the algorithm, especially when users are unlikely to have machine learning
expertise. The key to co-creative systems is the ability to communicate ideas
and intent from the user to the agent, as well as from the agent to the user.
Key questions in co-creative AI include: How can users express their creative
intentions? How can creative AI systems communicate their beliefs, explain
their moves, or instruct users to act on their behalf? When should creative AI
systems take initiative? The answer to such questions and more will enable us
to develop better co-creative systems that make humans more capable of
expressing their creative intents. We introduce CREATIVE-WAND, a customizable
framework for investigating co-creative mixed-initiative generation.
CREATIVE-WAND enables plug-and-play injection of generative models and
human-agent communication channels into a chat-based interface. It provides a
number of dimensions along which an AI generator and humans can communicate
during the co-creative process. We illustrate the CREATIVE-WAND framework by
using it to study one dimension of co-creative communication-global versus
local creative intent specification by the user-in the context of storytelling.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Creative Agents: Empowering Agents with Imagination for Creative Tasks [31.920963353890393]
We propose a class of solutions for creative agents, where the controller is enhanced with an imaginator that generates detailed imaginations of task outcomes conditioned on language instructions.
We benchmark creative tasks with the challenging open-world game Minecraft, where the agents are asked to create diverse buildings given free-form language instructions.
We perform a detailed experimental analysis of creative agents, showing that creative agents are the first AI agents accomplishing diverse building creation in the survival mode of Minecraft.
arXiv Detail & Related papers (2023-12-05T06:00:52Z) - Beyond Prompts: Exploring the Design Space of Mixed-Initiative
Co-Creativity Systems [11.427320283363326]
We conduct a human participant study with 185 participants to understand how users want to interact with differently configured MI-CC systems.
We find that MI-CC systems with more extensive coverage of the design space are rated higher or on par on a variety of creative and goal-completion metrics.
arXiv Detail & Related papers (2023-05-03T22:32:37Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
We introduce generative agents--computational software agents that simulate believable human behavior.
We describe an architecture that extends a large language model to store a complete record of the agent's experiences.
We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims.
arXiv Detail & Related papers (2023-04-07T01:55:19Z) - How to Prompt? Opportunities and Challenges of Zero- and Few-Shot
Learning for Human-AI Interaction in Creative Applications of Generative
Models [29.420160518026496]
We discuss the opportunities and challenges for interactive creative applications that use prompting as a new paradigm for Human-AI interaction.
Based on our analysis, we propose four design goals for user interfaces that support prompting.
We illustrate these with concrete UI design sketches, focusing on the use case of creative writing.
arXiv Detail & Related papers (2022-09-03T10:16:34Z) - Understanding User Perceptions, Collaborative Experience and User
Engagement in Different Human-AI Interaction Designs for Co-Creative Systems [0.7614628596146599]
Human-AI co-creativity involves humans and AI collaborating on a shared creative product as partners.
In many existing co-creative systems users can communicate with the AI, usually using buttons or sliders.
This paper presents a study with 38 participants to explore the impact of two interaction designs on user engagement, collaborative experience and user perception of a co-creative AI.
arXiv Detail & Related papers (2022-04-27T22:37:44Z) - Telling Creative Stories Using Generative Visual Aids [52.623545341588304]
We asked writers to write creative stories from a starting prompt, and provided them with visuals created by generative AI models from the same prompt.
Compared to a control group, writers who used the visuals as story writing aid wrote significantly more creative, original, complete and visualizable stories.
Findings indicate that cross modality inputs by AI can benefit divergent aspects of creativity in human-AI co-creation, but hinders convergent thinking.
arXiv Detail & Related papers (2021-10-27T23:13:47Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Enhancing user creativity: Semantic measures for idea generation [0.0]
We analyze a dataset of design problem-solving conversations in real-world settings by using 49 semantic measures based on WordNet 3.1.
We show that a divergence of semantic similarity, an increased information content, and a decreased polysemy predict the success of generated ideas.
These results advance cognitive science by identifying real-world processes in human problem solving.
arXiv Detail & Related papers (2021-06-18T13:47:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.