A Noise-Robust Loss for Unlabeled Entity Problem in Named Entity
Recognition
- URL: http://arxiv.org/abs/2208.02934v1
- Date: Fri, 5 Aug 2022 00:02:13 GMT
- Title: A Noise-Robust Loss for Unlabeled Entity Problem in Named Entity
Recognition
- Authors: Wentao Kang, Guijun Zhang, Xiao Fu
- Abstract summary: We propose a new loss function called NRCES to cope with unlabeled data.
Experiments on synthetic and real-world datasets demonstrate that our approach shows strong robustness in the case of severe unlabeled entity problem.
- Score: 9.321777368120658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named Entity Recognition (NER) is an important task in natural language
processing. However, traditional supervised NER requires large-scale annotated
datasets. Distantly supervision is proposed to alleviate the massive demand for
datasets, but datasets constructed in this way are extremely noisy and have a
serious unlabeled entity problem. The cross entropy (CE) loss function is
highly sensitive to unlabeled data, leading to severe performance degradation.
As an alternative, we propose a new loss function called NRCES to cope with
this problem. A sigmoid term is used to mitigate the negative impact of noise.
In addition, we balance the convergence and noise tolerance of the model
according to samples and the training process. Experiments on synthetic and
real-world datasets demonstrate that our approach shows strong robustness in
the case of severe unlabeled entity problem, achieving new state-of-the-art on
real-world datasets.
Related papers
- Mitigating Instance-Dependent Label Noise: Integrating Self-Supervised Pretraining with Pseudo-Label Refinement [3.272177633069322]
Real-world datasets often contain noisy labels due to human error, ambiguity, or resource constraints during the annotation process.
We propose a novel framework that combines self-supervised learning using SimCLR with iterative pseudo-label refinement.
Our approach significantly outperforms several state-of-the-art methods, particularly under high noise conditions.
arXiv Detail & Related papers (2024-12-06T09:56:49Z) - Improving a Named Entity Recognizer Trained on Noisy Data with a Few
Clean Instances [55.37242480995541]
We propose to denoise noisy NER data with guidance from a small set of clean instances.
Along with the main NER model we train a discriminator model and use its outputs to recalibrate the sample weights.
Results on public crowdsourcing and distant supervision datasets show that the proposed method can consistently improve performance with a small guidance set.
arXiv Detail & Related papers (2023-10-25T17:23:37Z) - Learning Noise-Robust Joint Representation for Multimodal Emotion Recognition under Incomplete Data Scenarios [23.43319138048058]
Multimodal emotion recognition (MER) in practical scenarios is significantly challenged by the presence of missing or incomplete data.
Traditional methods have often involved discarding data or substituting data segments with zero vectors to approximate these incompletenesses.
We introduce a novel noise-robust MER model that effectively learns robust multimodal joint representations from noisy data.
arXiv Detail & Related papers (2023-09-21T10:49:02Z) - Uncertainty-aware Self-training for Low-resource Neural Sequence
Labeling [29.744621356187764]
This paper presents SeqUST, a novel uncertain-aware self-training framework for Neural sequence labeling (NSL)
We incorporate Monte Carlo (MC) dropout in Bayesian neural network (BNN) to perform uncertainty estimation at the token level and then select reliable language tokens from unlabeled data.
A well-designed masked sequence labeling task with a noise-robust loss supports robust training, which aims to suppress the problem of noisy pseudo labels.
arXiv Detail & Related papers (2023-02-17T02:40:04Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Empirical Analysis of Unlabeled Entity Problem in Named Entity
Recognition [47.273602658066196]
In many scenarios, named entity recognition models severely suffer from unlabeled entity problem.
We propose a general approach, which can almost eliminate the misguidance brought by unlabeled entities.
Our model is robust to unlabeled entity problem and surpasses prior baselines.
arXiv Detail & Related papers (2020-12-10T02:53:59Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
We propose a novel identity separation method based on extreme value theory.
It greatly reduces the problems caused by overlapping-identity label noise.
Experiments on both controlled and real settings demonstrate our method's consistent improvements.
arXiv Detail & Related papers (2020-07-14T12:26:50Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets.
However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality.
We propose a Temporal Calibrated Regularization (TCR) in which we utilize the original labels and the predictions in the previous epoch together.
arXiv Detail & Related papers (2020-07-01T04:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.