論文の概要: Localized Sparse Incomplete Multi-view Clustering
- arxiv url: http://arxiv.org/abs/2208.02998v1
- Date: Fri, 5 Aug 2022 05:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-08 12:11:44.180918
- Title: Localized Sparse Incomplete Multi-view Clustering
- Title(参考訳): 局所スパース不完全多視点クラスタリング
- Authors: Chengliang Liu, Zhihao Wu, Jie Wen, Chao Huang, Yong Xu
- Abstract要約: 本稿では,ローカライズされたスパース不完全なマルチビュークラスタリング(LSIMVC)という,シンプルだが効果的な手法を提案する。
このような問題に対処するために,ローカライズされたスパース不完全なマルチビュークラスタリング(LSIMVC)という,シンプルだが効果的な手法を提案する。
- 参考スコア(独自算出の注目度): 22.009806900278786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incomplete multi-view clustering, which aims to solve the clustering problem
on the incomplete multi-view data with partial view missing, has received more
and more attention in recent years. Although numerous methods have been
developed, most of the methods either cannot flexibly handle the incomplete
multi-view data with arbitrary missing views or do not consider the negative
factor of information imbalance among views. Moreover, some methods do not
fully explore the local structure of all incomplete views. To tackle these
problems, this paper proposes a simple but effective method, named localized
sparse incomplete multi-view clustering (LSIMVC). Different from the existing
methods, LSIMVC intends to learn a sparse and structured consensus latent
representation from the incomplete multi-view data by optimizing a sparse
regularized and novel graph embedded multi-view matrix factorization model.
Specifically, in such a novel model based on the matrix factorization, a l1
norm based sparse constraint is introduced to obtain the sparse low-dimensional
individual representations and the sparse consensus representation. Moreover, a
novel local graph embedding term is introduced to learn the structured
consensus representation. Different from the existing works, our local graph
embedding term aggregates the graph embedding task and consensus representation
learning task into a concise term. Furthermore, to reduce the imbalance factor
of incomplete multi-view learning, an adaptive weighted learning scheme is
introduced to LSIMVC. Finally, an efficient optimization strategy is given to
solve the optimization problem of our proposed model. Comprehensive
experimental results performed on six incomplete multi-view databases verify
that the performance of our LSIMVC is superior to the state-of-the-art IMC
approaches. The code is available in https://github.com/justsmart/LSIMVC.
- Abstract(参考訳): 不完全なマルチビュークラスタリングは、部分的なビューを欠いた不完全なマルチビューデータのクラスタリング問題を解決することを目的としており、近年ますます注目を集めている。
多くの手法が開発されているが、ほとんどの手法は不完全なマルチビューデータを任意のビューで柔軟に処理できないか、あるいはビュー間の情報の不均衡の負の要因を考慮しない。
さらに、いくつかの手法はすべての不完全ビューの局所構造を完全には探求していない。
そこで本研究では,LSIMVC(Localized sparse incomplete multi-view clustering)という,単純かつ効果的な手法を提案する。
従来の手法と異なり、LSIMVCは、スパース正規化および新規なグラフ埋め込みマルチビュー行列分解モデルを最適化することにより、不完全なマルチビューデータからスパースおよび構造化されたコンセンサス潜在表現を学習しようとする。
具体的には,このような行列分解に基づく新しいモデルにおいて,l1ノルムに基づくスパース制約を導入し,スパース低次元の個人表現とスパースコンセンサス表現を得る。
さらに、構造化コンセンサス表現を学ぶために、新しい局所グラフ埋め込み用語を導入する。
既存の作業とは異なり、ローカルグラフ埋め込み項はグラフ埋め込みタスクとコンセンサス表現学習タスクを簡潔な用語に集約します。
さらに,不完全多視点学習の不均衡係数を低減するため,LSIMVCに適応重み付き学習方式を導入する。
最後に,提案モデルの最適化問題を解決するための効率的な最適化戦略を提案する。
6つの不完全なマルチビューデータベースで実施した総合的な実験結果から,LSIMVCの性能は最先端のIMC手法よりも優れていることが確認された。
コードはhttps://github.com/justsmart/LSIMVCで入手できる。
関連論文リスト
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
部分的マルチビュークラスタリング (PVC) は、実世界のアプリケーションにおけるデータ分析における実用的な研究課題である。
既存のクラスタリング手法は、不完全なビューを効果的に扱うのに苦労し、サブ最適クラスタリング性能に繋がる。
非完全多視点データにおける潜在的特徴の一貫性を最大化することを目的とした、コントラスト学習に基づく新しい双対最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T19:16:01Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
我々は,認知的深層不完全多視点クラスタリングネットワーク(CDIMC-net)という,新しい不完全多視点クラスタリングネットワークを提案する。
ビュー固有のディープエンコーダとグラフ埋め込み戦略をフレームワークに組み込むことで、各ビューの高レベルな特徴とローカル構造をキャプチャする。
人間の認知、すなわち、簡単からハードに学ぶことに基づいて、モデルトレーニングのための最も自信あるサンプルを選択するための自己評価戦略を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:45:03Z) - Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
高信頼誘導(ICMVC)を用いた非完全コントラストマルチビュークラスタリング手法を提案する。
まず、欠落した値問題に対処するために、マルチビュー整合関係転送とグラフ畳み込みネットワークを提案する。
第2に、補完情報を活用するために、インスタンスレベルの注意融合と高信頼誘導を提案する。
論文 参考訳(メタデータ) (2023-12-14T07:28:41Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
本研究では,多視点クラスタリングフレームワークを情報理論の観点から検討する,SUMVC(Sufficient Multi-View Clustering)と呼ばれる新しい手法を提案する。
まず,変分解析を用いて一貫した情報を生成する,シンプルで信頼性の高いマルチビュークラスタリング手法SCMVCを開発する。
次に、一貫した情報を強化し、ビュー間の不要な情報を最小限に抑えるのに十分な表現境界を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:41:11Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
本稿では,新しいアンカーグラフ学習フレームワークを提案する。
ビュー固有のアンカーグラフを構築し、異なるビューから補完情報をキャプチャする。
提案したSIMVC-SAの時間と空間の複雑さはサンプル数と線形に相関していることが証明された。
論文 参考訳(メタデータ) (2023-08-31T08:30:26Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
マルチビュークラスタリングは、機械学習とデータマイニングにおいて重要かつ困難なタスクです。
本稿では,ディープセミnmfとグローバルグラフリファインメント(mvc-dmf-ggr)を用いたマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2021-05-01T13:40:20Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。