Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting
- URL: http://arxiv.org/abs/2208.03063v2
- Date: Fri, 11 Aug 2023 09:31:23 GMT
- Title: Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting
- Authors: Juyong Jiang, Binqing Wu, Ling Chen, Kai Zhang, Sunghun Kim
- Abstract summary: We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
- Score: 11.680589359294972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic forecasting is an essential problem in urban planning and computing.
The complex dynamic spatial-temporal dependencies among traffic objects (e.g.,
sensors and road segments) have been calling for highly flexible models;
unfortunately, sophisticated models may suffer from poor robustness especially
in capturing the trend of the time series (1st-order derivatives with time),
leading to unrealistic forecasts. To address the challenge of balancing
dynamics and robustness, we propose TrendGCN, a new scheme that extends the
flexibility of GCNs and the distribution-preserving capacity of generative and
adversarial loss for handling sequential data with inherent statistical
correlations. On the one hand, our model simultaneously incorporates spatial
(node-wise) embeddings and temporal (time-wise) embeddings to account for
heterogeneous space-and-time convolutions; on the other hand, it uses GAN
structure to systematically evaluate statistical consistencies between the real
and the predicted time series in terms of both the temporal trending and the
complex spatial-temporal dependencies. Compared with traditional approaches
that handle step-wise predictive errors independently, our approach can produce
more realistic and robust forecasts. Experiments on six benchmark traffic
forecasting datasets and theoretical analysis both demonstrate the superiority
and the state-of-the-art performance of TrendGCN. Source code is available at
https://github.com/juyongjiang/TrendGCN.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Spatiotemporal Forecasting of Traffic Flow using Wavelet-based Temporal Attention [3.049645421090079]
This paper proposes a wavelet-based temporal attention model, namely wavelet-based dynamic graph neural network (DS-DSNN) for tackling the traffic forecasting problem.
Our proposed ensemble method can better handle dynamic temporal and spatial benchmarks and make reliable long-term forecasts.
arXiv Detail & Related papers (2024-07-05T11:42:39Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting [10.392021668859272]
This paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order-temporal relationships.
To capture diverse transitional properties to enhance traffic forecasting, we propose a conjoint-attention decoder that models diverse temporal patterns from both multi-rank and multi-scale views.
arXiv Detail & Related papers (2024-03-02T04:30:09Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.