COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting
- URL: http://arxiv.org/abs/2403.01091v1
- Date: Sat, 2 Mar 2024 04:30:09 GMT
- Title: COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting
- Authors: Wei Ju, Yusheng Zhao, Yifang Qin, Siyu Yi, Jingyang Yuan, Zhiping
Xiao, Xiao Luo, Xiting Yan, and Ming Zhang
- Abstract summary: This paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order-temporal relationships.
To capture diverse transitional properties to enhance traffic forecasting, we propose a conjoint-attention decoder that models diverse temporal patterns from both multi-rank and multi-scale views.
- Score: 10.392021668859272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates traffic forecasting, which attempts to forecast the
future state of traffic based on historical situations. This problem has
received ever-increasing attention in various scenarios and facilitated the
development of numerous downstream applications such as urban planning and
transportation management. However, the efficacy of existing methods remains
sub-optimal due to their tendency to model temporal and spatial relationships
independently, thereby inadequately accounting for complex high-order
interactions of both worlds. Moreover, the diversity of transitional patterns
in traffic forecasting makes them challenging to capture for existing
approaches, warranting a deeper exploration of their diversity. Toward this
end, this paper proposes Conjoint Spatio-Temporal graph neural network
(abbreviated as COOL), which models heterogeneous graphs from prior and
posterior information to conjointly capture high-order spatio-temporal
relationships. On the one hand, heterogeneous graphs connecting sequential
observation are constructed to extract composite spatio-temporal relationships
via prior message passing. On the other hand, we model dynamic relationships
using constructed affinity and penalty graphs, which guide posterior message
passing to incorporate complementary semantic information into node
representations. Moreover, to capture diverse transitional properties to
enhance traffic forecasting, we propose a conjoint self-attention decoder that
models diverse temporal patterns from both multi-rank and multi-scale views.
Experimental results on four popular benchmark datasets demonstrate that our
proposed COOL provides state-of-the-art performance compared with the
competitive baselines.
Related papers
- Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
Traffic flow forecasting aims to predict future traffic conditions on the basis of networks and traffic conditions in the past.
The problem is typically solved by modeling complex-temporal correlations in traffic data using far-temporal neural networks (GNNs)
Existing methods follow the paradigm of message passing that aggregates neighborhood information linearly.
In this paper, we propose a model named Dynamic Hyper Structure Learning (DyHSL) for traffic flow prediction.
arXiv Detail & Related papers (2023-09-21T12:44:55Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.