論文の概要: Large vocabulary speech recognition for languages of Africa:
multilingual modeling and self-supervised learning
- arxiv url: http://arxiv.org/abs/2208.03067v1
- Date: Fri, 5 Aug 2022 09:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-08 13:06:57.454832
- Title: Large vocabulary speech recognition for languages of Africa:
multilingual modeling and self-supervised learning
- Title(参考訳): アフリカの言語に対する大語彙音声認識:多言語モデリングと自己教師型学習
- Authors: Sandy Ritchie, You-Chi Cheng, Mingqing Chen, Rajiv Mathews, Daan van
Esch, Bo Li, Khe Chai Sim
- Abstract要約: アフリカで話されている2000以上の言語のうち、ほとんど誰も自動音声認識システムを提供していない。
我々はアフリカ語に対する大語彙音声認識の経路を提供する2つの手法の実験を行った。
- 参考スコア(独自算出の注目度): 11.408563104045285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Almost none of the 2,000+ languages spoken in Africa have widely available
automatic speech recognition systems, and the required data is also only
available for a few languages. We have experimented with two techniques which
may provide pathways to large vocabulary speech recognition for African
languages: multilingual modeling and self-supervised learning. We gathered
available open source data and collected data for 15 languages, and trained
experimental models using these techniques. Our results show that pooling the
small amounts of data available in multilingual end-to-end models, and
pre-training on unsupervised data can help improve speech recognition quality
for many African languages.
- Abstract(参考訳): アフリカで話されている2000以上の言語のうち、ほとんど誰も自動音声認識システムを提供しておらず、必要なデータはいくつかの言語でのみ利用できる。
我々は,アフリカ語に対する大規模な語彙認識の経路を提供する2つの手法,多言語モデリングと自己教師型学習の実験を行った。
利用可能なオープンソースデータを集め、15言語のデータを収集し、これらのテクニックを使って実験モデルを訓練しました。
その結果,多言語エンドツーエンドモデルで利用可能な少数のデータをプールし,教師なしデータに事前学習することで,多くのアフリカの言語における音声認識品質の向上が期待できることがわかった。
関連論文リスト
- Lip Reading for Low-resource Languages by Learning and Combining General
Speech Knowledge and Language-specific Knowledge [57.38948190611797]
本稿では,特に低リソース言語を対象とした新しい唇読解フレームワークを提案する。
低リソース言語は、そのモデルを訓練するのに十分なビデオテキストペアデータを持っていないため、低リソース言語のための唇読解モデルを開発するのは難しいと考えられている。
論文 参考訳(メタデータ) (2023-08-18T05:19:03Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Zambezi Voice: A Multilingual Speech Corpus for Zambian Languages [20.25236081418051]
Zambezi Voiceはザンビア語のためのオープンソースの多言語音声リソースである。
我々の知る限り、ザンビア語で作成された最初の多言語音声データセットである。
論文 参考訳(メタデータ) (2023-06-07T13:36:37Z) - Scaling Speech Technology to 1,000+ Languages [66.31120979098483]
MMS(Massively Multilingual Speech)プロジェクトは、タスクに応じてサポート言語を10~40倍増やす。
主な材料は、一般に公開されている宗教文書の読解に基づく新しいデータセットである。
我々は,1,406言語,1,107言語用1つの多言語自動音声認識モデル,同一言語用音声合成モデル,4,017言語用言語識別モデルについて,事前学習したwav2vec 2.0モデルを構築した。
論文 参考訳(メタデータ) (2023-05-22T22:09:41Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Adaptive multilingual speech recognition with pretrained models [24.01587237432548]
本稿では,2つのモードに対して事前学習した2つのモデルの有効性について検討する。
全体としては、純粋に教師付き学習よりも44%の改善が見られた。
論文 参考訳(メタデータ) (2022-05-24T18:29:07Z) - Discovering Phonetic Inventories with Crosslingual Automatic Speech
Recognition [71.49308685090324]
本稿では,未知言語における音声認識における異なる要因(モデルアーキテクチャ,音韻モデル,音声表現の種類)の影響について検討する。
独特な音、類似した音、トーン言語は、音声による在庫発見の大きな課題である。
論文 参考訳(メタデータ) (2022-01-26T22:12:55Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - Improved Language Identification Through Cross-Lingual Self-Supervised
Learning [37.32193095549614]
我々は、事前訓練されたモデルを用いて、言語識別に関する以前の自己教師型研究を拡張した。
25言語のセットアップ結果から、言語毎にラベル付きデータの10分で、言語横断的に事前訓練されたモデルが93%以上の精度を達成できることが示された。
論文 参考訳(メタデータ) (2021-07-08T19:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。