論文の概要: Distance-based detection of out-of-distribution silent failures for
Covid-19 lung lesion segmentation
- arxiv url: http://arxiv.org/abs/2208.03217v1
- Date: Fri, 5 Aug 2022 15:05:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-08 12:22:18.830564
- Title: Distance-based detection of out-of-distribution silent failures for
Covid-19 lung lesion segmentation
- Title(参考訳): Covid-19肺病変セグメンテーションにおけるアウト・オブ・ディストリビューション・サイレント障害の検出
- Authors: Camila Gonzalez, Karol Gotkowski, Moritz Fuchs, Andreas Bucher, Armin
Dadras, Ricarda Fischbach, Isabel Kaltenborn and Anirban Mukhopadhyay
- Abstract要約: ディープラーニングモデルは、アウト・オブ・ディストリビューションデータにサイレントに失敗するため、臨床ルーチンに信頼されていない。
特徴空間におけるマハラノビス距離を利用する軽量なOOD検出法を提案する。
胸部CT像の分布変化とMRIの2つの応用について検討した。
- 参考スコア(独自算出の注目度): 0.8200989595956418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic segmentation of ground glass opacities and consolidations in chest
computer tomography (CT) scans can potentially ease the burden of radiologists
during times of high resource utilisation. However, deep learning models are
not trusted in the clinical routine due to failing silently on
out-of-distribution (OOD) data. We propose a lightweight OOD detection method
that leverages the Mahalanobis distance in the feature space and seamlessly
integrates into state-of-the-art segmentation pipelines. The simple approach
can even augment pre-trained models with clinically relevant uncertainty
quantification. We validate our method across four chest CT distribution shifts
and two magnetic resonance imaging applications, namely segmentation of the
hippocampus and the prostate. Our results show that the proposed method
effectively detects far- and near-OOD samples across all explored scenarios.
- Abstract(参考訳): 胸部CTスキャンにおけるグラウンドガラスの不透明度の自動分離と濃縮は,高資源利用時の放射線技師の負担を軽減する可能性がある。
しかし、深層学習モデルは、オフ・オブ・ディストリビューション(OOD)データに静かに失敗するため、臨床ルーチンには信頼できない。
本稿では,特徴空間におけるマハラノビス距離を利用して,最先端のセグメンテーションパイプラインにシームレスに統合する軽量なOOD検出手法を提案する。
この単純なアプローチは、臨床的に関係のある不確実性定量化を伴う事前訓練されたモデルを拡張することもできる。
胸部CT像の分布変化と2つのMRI像,すなわち海馬と前立腺の分節化について検討した。
提案手法は,全シナリオにわたる遠距離及び近距離OODサンプルを効果的に検出する。
関連論文リスト
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X線被曝は、がんなどの潜在的な健康リスクへの懸念を引き起こす。
放射線線量を減らすという欲求は、研究者に再建の質の向上を促した。
本稿では,市販マルチスライス・スパイラルCTスキャナの2段階化手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T09:30:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Detecting when pre-trained nnU-Net models fail silently for Covid-19
lung lesion segmentation [0.34940201626430645]
本稿では,特徴空間におけるマハラノビス距離を利用した軽量OOD検出手法を提案する。
多施設データセットで訓練したパッチベースのnnU-Netアーキテクチャを用いて,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2021-07-13T10:48:08Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - A new semi-supervised self-training method for lung cancer prediction [0.28734453162509355]
CT(Computerd Tomography)スキャンから結節を同時に検出し、分類する方法は比較的少ない。
本研究は,Nuisy Student法による最先端の自己訓練法を用いて,肺結節の検出と分類を行うための完全なエンドツーエンドスキームを提案する。
論文 参考訳(メタデータ) (2020-12-17T09:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。