Information bottleneck theory of high-dimensional regression: relevancy,
efficiency and optimality
- URL: http://arxiv.org/abs/2208.03848v1
- Date: Mon, 8 Aug 2022 00:09:12 GMT
- Title: Information bottleneck theory of high-dimensional regression: relevancy,
efficiency and optimality
- Authors: Vudtiwat Ngampruetikorn, David J. Schwab
- Abstract summary: Overfitting is a central challenge in machine learning, yet many large neural networks readily achieve zero training loss.
We quantify overfitting via residual information, defined as the bits in fitted models that encode noise in training data.
- Score: 6.700873164609009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Avoiding overfitting is a central challenge in machine learning, yet many
large neural networks readily achieve zero training loss. This puzzling
contradiction necessitates new approaches to the study of overfitting. Here we
quantify overfitting via residual information, defined as the bits in fitted
models that encode noise in training data. Information efficient learning
algorithms minimize residual information while maximizing the relevant bits,
which are predictive of the unknown generative models. We solve this
optimization to obtain the information content of optimal algorithms for a
linear regression problem and compare it to that of randomized ridge
regression. Our results demonstrate the fundamental tradeoff between residual
and relevant information and characterize the relative information efficiency
of randomized regression with respect to optimal algorithms. Finally, using
results from random matrix theory, we reveal the information complexity of
learning a linear map in high dimensions and unveil information-theoretic
analogs of double and multiple descent phenomena.
Related papers
- Learning of networked spreading models from noisy and incomplete data [7.669018800404791]
We introduce a universal learning method based on scalable dynamic message-passing technique.
The algorithm leverages available prior knowledge on the model and on the data, and reconstructs both network structure and parameters of a spreading model.
We show that a linear computational complexity of the method with the key model parameters makes the algorithm scalable to large network instances.
arXiv Detail & Related papers (2023-12-20T13:12:47Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
Real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues.
We propose a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function.
We also test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.
arXiv Detail & Related papers (2023-06-19T19:57:33Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Scalable Vector Gaussian Information Bottleneck [19.21005180893519]
We study a variation of the problem, called scalable information bottleneck, in which the encoder outputs multiple descriptions of the observation.
We derive a variational inference type algorithm for general sources with unknown distribution; and show means of parametrizing it using neural networks.
arXiv Detail & Related papers (2021-02-15T12:51:26Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.