Bridging the Gap: Commonality and Differences between Online and Offline
COVID-19 Data
- URL: http://arxiv.org/abs/2208.03907v3
- Date: Thu, 11 Aug 2022 22:28:47 GMT
- Title: Bridging the Gap: Commonality and Differences between Online and Offline
COVID-19 Data
- Authors: Nayoung Kim, Ahmadreza Mosallanezhad, Lu Cheng, Baoxin Li, Huan Li
- Abstract summary: Online and offline news are often connected, sharing common topics while each has unique, different topics.
A gap between these two news sources can lead to misinformation propagation.
We focus on the novel problem of bridging the gap between online and offline data by monitoring their common and distinct topics generated over time.
- Score: 28.94255320469269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the onset of the COVID-19 pandemic, news outlets and social media have
become central tools for disseminating and consuming information. Because of
their ease of access, users seek COVID-19-related information from online
social media (i.e., online news) and news outlets (i.e., offline news). Online
and offline news are often connected, sharing common topics while each has
unique, different topics. A gap between these two news sources can lead to
misinformation propagation. For instance, according to the Guardian, most
COVID-19 misinformation comes from users on social media. Without fact-checking
social media news, misinformation can lead to health threats. In this paper, we
focus on the novel problem of bridging the gap between online and offline data
by monitoring their common and distinct topics generated over time. We employ
Twitter (online) and local news (offline) data for a time span of two years.
Using online matrix factorization, we analyze and study online and offline
COVID-19-related data differences and commonalities. We design experiments to
show how online and offline data are linked together and what trends they
follow.
Related papers
- News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
This study investigated information consumption in four European countries.
It analyzed three years of Twitter activity from news outlet accounts in France, Germany, Italy, and the UK.
Results indicate that reliable sources dominate the information landscape, although unreliable content is still present across all countries.
arXiv Detail & Related papers (2023-11-09T16:22:10Z) - Measuring COVID-19 Related Media Consumption on Twitter [2.746705315038595]
Social media platforms have provided essential updates regarding the pandemic.
Online communications with media outlets remain unexplored on an international scale.
This thesis presents the first-of-its-kind study on media consumption on COVID-19 across countries.
arXiv Detail & Related papers (2023-09-16T04:01:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - The Spread of Propaganda by Coordinated Communities on Social Media [43.2770127582382]
We analyze the spread of propaganda and its interplay with coordinated behavior on a large Twitter dataset about the 2019 UK general election.
The combination of the use of propaganda and coordinated behavior allows us to uncover the authenticity and harmfulness of the different communities.
arXiv Detail & Related papers (2021-09-27T13:39:10Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Analysis of misinformation during the COVID-19 outbreak in China:
cultural, social and political entanglements [6.256108383411306]
COVID-19 resulted in an infodemic, which could erode public trust, impede virus containment, and outlive the pandemic itself.
The evolving and fragmented media landscape is a key driver of the spread of misinformation.
Our findings shed light on the distinct characteristics of misinformation during the COVID-19 and offer insights into combating misinformation in China and across the world at large.
arXiv Detail & Related papers (2020-05-21T01:34:08Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z) - COVID-19 on Social Media: Analyzing Misinformation in Twitter
Conversations [22.43295864610142]
We collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020.
We identified unreliable and misleading contents based on fact-checking sources.
We examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets.
arXiv Detail & Related papers (2020-03-26T09:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.