A study of the quasi-probability distributions of the Tavis-Cummings
model under different quantum channels
- URL: http://arxiv.org/abs/2208.04037v2
- Date: Tue, 20 Jun 2023 00:51:03 GMT
- Title: A study of the quasi-probability distributions of the Tavis-Cummings
model under different quantum channels
- Authors: Devvrat Tiwari and Subhashish Banerjee
- Abstract summary: We study the dynamics of the spin and cavity field of the Tavis-Cummings model using quasi-probability distribution functions and second order coherence function.
The relationship between the evolution of the cavity photon number, spin excitation, and atomic inversion under different quantum channels is observed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the dynamics of the spin and cavity field of the Tavis-Cummings
model using quasi-probability distribution functions and second order coherence
function, respectively. The effects of (non)-Markovian noise are considered.
The relationship between the evolution of the cavity photon number, spin
excitation, and atomic inversion under different quantum channels is observed.
The equal-time second-order coherence function is used to study the
sub-Poissonian behavior of light, and is compared with the two-time
second-order coherence function in order to highlight the (anti)-bunching
properties of the cavity radiation.
Related papers
- Quantum-fluctuation asymmetry in multiphoton Jaynes-Cummings resonances [0.0]
We explore the statistical behavior of the light emanating from a coherently driven Jaynes-Cummings (JC) oscillator operating in the regime of multiphoton blockade.
We find that monitoring different quadratures of the cavity field in conditional homodyne detection affects the times waited between successive photon counter clicks''
Despite the fact that the steady-state cavity occupation is of the order of a photon, monitoring of the developing bimodality also impacts on the ratio between the emissions directed along the two decoherence channels.
arXiv Detail & Related papers (2024-05-22T12:48:59Z) - Tunable photon-photon correlations in waveguide QED systems with giant
atoms [4.520321677645778]
We investigate the scattering processes of two photons in a one-dimensional waveguide coupled to two giant atoms.
By adjusting the accumulated phase shifts between the coupling points, we are able to effectively manipulate the characteristics of these scattering photons.
arXiv Detail & Related papers (2023-11-07T09:02:28Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.