Discrete Abelian lattice gauge theories on a ladder and their dualities
with quantum clock models
- URL: http://arxiv.org/abs/2208.04182v4
- Date: Mon, 12 Feb 2024 00:05:12 GMT
- Title: Discrete Abelian lattice gauge theories on a ladder and their dualities
with quantum clock models
- Authors: Sunny Pradhan, Andrea Maroncelli, Elisa Ercolessi
- Abstract summary: We study a duality transformation from the gauge-invariant subspace of a $mathbbZ_N$ lattice gauge theory to an $N$-clock model on a single chain.
The main feature of this mapping is the emergence of a longitudinal field in the clock model, whose value depends on the superselection sector of the gauge model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a duality transformation from the gauge-invariant subspace of a
$\mathbb{Z}_N$ lattice gauge theory on a two-leg ladder geometry to an
$N$-clock model on a single chain. The main feature of this mapping is the
emergence of a longitudinal field in the clock model, whose value depends on
the superselection sector of the gauge model, implying that the different
sectors of the gauge theory can show quite different phase diagrams. In order
to investigate this and see if confined phases might emerge, we perform a
numerical analysis for $N = 2, 3, 4$, using exact diagonalization and DMRG.
Related papers
- Domain walls from SPT-sewing [43.87233488320917]
We propose a correspondence between 1d SPT phases with a non-invertible $Gtimes textRep(G)times G$ symmetry and invertible domain walls in the quantum double associated with the group $G$.
We also use our method to construct emphanchoring domain walls, which are novel exotic domain walls in the 3d toric code that transform point-like excitations to semi-loop-like excitations anchored on these domain walls.
arXiv Detail & Related papers (2024-11-18T19:00:16Z) - Percolation renormalization group analysis of confinement in $\mathbb{Z}_2$ lattice gauge theories [0.0]
We develop a real-space renormalization group formalism for $mathbbZ$ LGTs using percolation probability as a confinement order parameter.
Our scheme enables future analytical studies of $mathZ$ LGTs with matter and quantum fluctuations and beyond.
arXiv Detail & Related papers (2024-06-25T12:51:44Z) - Understanding Heterophily for Graph Neural Networks [42.640057865981156]
We present theoretical understandings of the impacts of different heterophily patterns for Graph Neural Networks (GNNs)
We show that the separability gains are determined by the normalized distance of the $l$-powered neighborhood distributions.
Experiments on both synthetic and real-world data verify the effectiveness of our theory.
arXiv Detail & Related papers (2024-01-17T11:01:28Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Dualities in one-dimensional quantum lattice models: topological sectors [0.0]
We construct a general framework for relating the spectra of dual theories to each other.
We find that the mapping between its topological sectors and those of the XXZ model is associated with the non-trivial braided auto-equivalence of the Drinfel'd center.
arXiv Detail & Related papers (2022-11-07T18:54:57Z) - A critical lattice model for a Haagerup conformal field theory [0.0]
We use the formalism of strange correlators to construct a critical classical lattice model in two dimensions.
We present compelling numerical evidence in the form of finite entanglement scaling to support a Haagerup conformal field theory.
arXiv Detail & Related papers (2021-10-07T14:57:52Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Prediction of Toric Code Topological Order from Rydberg Blockade [0.0]
We find a topological quantum liquid (TQL) as evidenced by multiple measures.
We show how these can be measured experimentally using a dynamic protocol.
We discuss the implications for exploring fault-tolerant quantum memories.
arXiv Detail & Related papers (2020-11-24T19:00:05Z) - $\mathbb{Z}_N$ lattice gauge theory in a ladder geometry [0.0]
Hamiltonian lattice gauge theories defined in two-leg ladders.
We consider a model that includes both gauge boson and Higgs matter degrees of freedom with local $mathbbZ_N$ gauge symmetries.
arXiv Detail & Related papers (2020-11-12T17:48:25Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.