Understanding Heterophily for Graph Neural Networks
- URL: http://arxiv.org/abs/2401.09125v2
- Date: Tue, 4 Jun 2024 14:15:55 GMT
- Title: Understanding Heterophily for Graph Neural Networks
- Authors: Junfu Wang, Yuanfang Guo, Liang Yang, Yunhong Wang,
- Abstract summary: We present theoretical understandings of the impacts of different heterophily patterns for Graph Neural Networks (GNNs)
We show that the separability gains are determined by the normalized distance of the $l$-powered neighborhood distributions.
Experiments on both synthetic and real-world data verify the effectiveness of our theory.
- Score: 42.640057865981156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs with heterophily have been regarded as challenging scenarios for Graph Neural Networks (GNNs), where nodes are connected with dissimilar neighbors through various patterns. In this paper, we present theoretical understandings of the impacts of different heterophily patterns for GNNs by incorporating the graph convolution (GC) operations into fully connected networks via the proposed Heterophilous Stochastic Block Models (HSBM), a general random graph model that can accommodate diverse heterophily patterns. Firstly, we show that by applying a GC operation, the separability gains are determined by two factors, i.e., the Euclidean distance of the neighborhood distributions and $\sqrt{\mathbb{E}\left[\operatorname{deg}\right]}$, where $\mathbb{E}\left[\operatorname{deg}\right]$ is the averaged node degree. It reveals that the impact of heterophily on classification needs to be evaluated alongside the averaged node degree. Secondly, we show that the topological noise has a detrimental impact on separability, which is equivalent to degrading $\mathbb{E}\left[\operatorname{deg}\right]$. Finally, when applying multiple GC operations, we show that the separability gains are determined by the normalized distance of the $l$-powered neighborhood distributions. It indicates that the nodes still possess separability as $l$ goes to infinity in a wide range of regimes. Extensive experiments on both synthetic and real-world data verify the effectiveness of our theory.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - Heterophily-Aware Graph Attention Network [42.640057865981156]
Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning.
Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem.
We propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily.
arXiv Detail & Related papers (2023-02-07T03:21:55Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks.
We show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data.
We provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network.
arXiv Detail & Related papers (2022-04-20T08:24:43Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily [24.742449127169586]
Graph Neural Networks (GNNs) are widely used on a variety of graph-based machine learning tasks.
For node-level tasks, GNNs have strong power to model the homophily property of graphs.
We propose a novel GNN model based on a bi- kernel feature transformation and a selection gate.
arXiv Detail & Related papers (2021-10-29T13:44:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.