Label-Free Synthetic Pretraining of Object Detectors
- URL: http://arxiv.org/abs/2208.04268v1
- Date: Mon, 8 Aug 2022 16:55:17 GMT
- Title: Label-Free Synthetic Pretraining of Object Detectors
- Authors: Hei Law, Jia Deng
- Abstract summary: We propose a new approach, Synthetic optimized layout with Instance Detection (SOLID), to pretrain object detectors with synthetic images.
Our "SOLID" approach consists of two main components: (1) generating synthetic images using a collection of unlabelled 3D models with optimized scene arrangement; (2) pretraining an object detector on "instance detection" task.
Our approach does not need any semantic labels for pretraining and allows the use of arbitrary, diverse 3D models.
- Score: 67.17371526567325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new approach, Synthetic Optimized Layout with Instance Detection
(SOLID), to pretrain object detectors with synthetic images. Our "SOLID"
approach consists of two main components: (1) generating synthetic images using
a collection of unlabelled 3D models with optimized scene arrangement; (2)
pretraining an object detector on "instance detection" task - given a query
image depicting an object, detecting all instances of the exact same object in
a target image. Our approach does not need any semantic labels for pretraining
and allows the use of arbitrary, diverse 3D models. Experiments on COCO show
that with optimized data generation and a proper pretraining task, synthetic
data can be highly effective data for pretraining object detectors. In
particular, pretraining on rendered images achieves performance competitive
with pretraining on real images while using significantly less computing
resources. Code is available at https://github.com/princeton-vl/SOLID.
Related papers
- Hardness-Aware Scene Synthesis for Semi-Supervised 3D Object Detection [59.33188668341604]
3D object detection serves as the fundamental task of autonomous driving perception.
It is costly to obtain high-quality annotations for point cloud data.
We propose a hardness-aware scene synthesis (HASS) method to generate adaptive synthetic scenes.
arXiv Detail & Related papers (2024-05-27T17:59:23Z) - Disentangled Pre-training for Human-Object Interaction Detection [22.653500926559833]
We propose an efficient disentangled pre-training method for HOI detection (DP-HOI)
DP-HOI utilizes object detection and action recognition datasets to pre-train the detection and interaction decoder layers.
It significantly enhances the performance of existing HOI detection models on a broad range of rare categories.
arXiv Detail & Related papers (2024-04-02T08:21:16Z) - PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection.
We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
arXiv Detail & Related papers (2023-08-14T07:45:54Z) - Explore the Power of Synthetic Data on Few-shot Object Detection [27.26215175101865]
Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training.
Recent text-to-image generation models have shown promising results in generating high-quality images.
This work extensively studies how synthetic images generated from state-of-the-art text-to-image generators benefit FSOD tasks.
arXiv Detail & Related papers (2023-03-23T12:34:52Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
We present the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection.
We use collections of real world images without bounding box annotations to learn to synthesize and detect objects.
Our work advances the field of self-supervised object detection by introducing a successful new paradigm of using controllable GAN-based image synthesis for it.
arXiv Detail & Related papers (2021-10-19T11:04:05Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
arXiv Detail & Related papers (2021-06-04T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.