論文の概要: Visual-Inertial Multi-Instance Dynamic SLAM with Object-level
Relocalisation
- arxiv url: http://arxiv.org/abs/2208.04274v1
- Date: Mon, 8 Aug 2022 17:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 14:08:02.718703
- Title: Visual-Inertial Multi-Instance Dynamic SLAM with Object-level
Relocalisation
- Title(参考訳): オブジェクトレベルの再ローカライゼーションを備えたビジュアル慣性マルチインスタンス動的SLAM
- Authors: Yifei Ren, Binbin Xu, Christopher L. Choi, and Stefan Leutenegger
- Abstract要約: 密結合型ビジュアル・慣性オブジェクトレベルのマルチインスタンス動的SLAMシステムを提案する。
カメラのポーズ、速度、IMUバイアスを強く最適化し、環境の高密度な3D再構成オブジェクトレベルマップを構築することができる。
- 参考スコア(独自算出の注目度): 14.302118093865849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a tightly-coupled visual-inertial object-level
multi-instance dynamic SLAM system. Even in extremely dynamic scenes, it can
robustly optimise for the camera pose, velocity, IMU biases and build a dense
3D reconstruction object-level map of the environment. Our system can robustly
track and reconstruct the geometries of arbitrary objects, their semantics and
motion by incrementally fusing associated colour, depth, semantic, and
foreground object probabilities into each object model thanks to its robust
sensor and object tracking. In addition, when an object is lost or moved
outside the camera field of view, our system can reliably recover its pose upon
re-observation. We demonstrate the robustness and accuracy of our method by
quantitatively and qualitatively testing it in real-world data sequences.
- Abstract(参考訳): 本稿では,密結合型ビジュアル・慣性オブジェクトレベルのマルチインスタンス動的SLAMシステムを提案する。
非常にダイナミックなシーンでも、カメラのポーズ、速度、IMUバイアスを強く最適化し、環境の高密度な3D再構成オブジェクトレベルマップを構築することができる。
本システムでは, 任意のオブジェクトのジオメトリ, セマンティクス, 動きを, その頑健なセンサとオブジェクトトラッキングにより, 関連した色, 深度, セマンティクス, 前景オブジェクトの確率を各オブジェクトモデルに段階的に融合させることにより, 頑健に追跡・再構成することができる。
また,被写体がカメラの視野外に紛失したり移動したりすると,再観測時に確実にポーズを復元することができる。
実世界のデータシーケンスで定量的に定性的にテストすることで,本手法の堅牢性と精度を実証する。
関連論文リスト
- Simultaneous Map and Object Reconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、最近の新しいビュー合成法から着想を得て、大域的な最適化として再構築問題を提起する。
連続動作の慎重なモデリングにより, 回転するLiDARセンサの回転シャッター効果を補うことができる。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - Zero-Shot Multi-Object Shape Completion [59.325611678171974]
1枚のRGB-D画像から複雑なシーンにおける複数の物体の完全な形状を復元する3次元形状補完法を提案する。
提案手法は, 合成および実世界の両方のデータセットにおいて, 現在の最先端技術よりも優れている。
論文 参考訳(メタデータ) (2024-03-21T17:59:59Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - UniQuadric: A SLAM Backend for Unknown Rigid Object 3D Tracking and
Light-Weight Modeling [7.626461564400769]
本稿では,エゴモーショントラッキング,剛体オブジェクトモーショントラッキング,モデリングを統一するSLAMバックエンドを提案する。
本システムは,複雑な動的シーンにおける物体知覚の潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-29T07:50:09Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3は高密度3次元再構成とエゴモーション推定のためのマルチカメラシステムである。
提案手法は,複数のカメラからの時空間情報と単眼深度補正を利用する。
この設計により、困難で動的な屋外環境の密集した一貫した3次元再構成が可能になる。
論文 参考訳(メタデータ) (2023-08-28T17:13:49Z) - 3D Object Aided Self-Supervised Monocular Depth Estimation [5.579605877061333]
本研究では,モノクロ3次元物体検出による動的物体の動きに対処する新しい手法を提案する。
具体的には、まず画像中の3Dオブジェクトを検出し、検出されたオブジェクトのポーズと動的ピクセル間の対応性を構築する。
このようにして、各ピクセルの深さは有意義な幾何学モデルによって学習することができる。
論文 参考訳(メタデータ) (2022-12-04T08:52:33Z) - MOTSLAM: MOT-assisted monocular dynamic SLAM using single-view depth
estimation [5.33931801679129]
MOTSLAMは動的ビジュアルSLAMシステムであり、動的オブジェクトのポーズとバウンディングボックスの両方を追跡する単分子構成を持つ。
KITTIデータセットを用いた実験により,カメラのエゴモーションとモノラルな動的SLAMでの物体追跡の両方において,我々のシステムが最高の性能を示した。
論文 参考訳(メタデータ) (2022-10-05T06:07:10Z) - AirDOS: Dynamic SLAM benefits from Articulated Objects [9.045690662672659]
オブジェクト認識SLAM(DOS)は、動的環境におけるロバストな動き推定を可能にするためにオブジェクトレベル情報を利用する。
AirDOSは、動的な調音オブジェクトを組み込むことで、カメラのポーズ推定を改善することができることを示す最初の動的オブジェクト認識SLAMシステムである。
論文 参考訳(メタデータ) (2021-09-21T01:23:48Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOTはインスタンスセグメンテーションとマルチビュー幾何を組み合わせて、動的オブジェクトのマスクを生成する。
実際にどのオブジェクトが動いているかを判断するために、DOTは、潜在的にダイナミックなオブジェクトの最初のインスタンスを抽出し、次に推定されたカメラモーションで、測光再投射誤差を最小限にして、そのようなオブジェクトを追跡する。
提案手法はORB-SLAM 2の精度とロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-09-30T18:36:28Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。