論文の概要: Occlusion-Aware Instance Segmentation via BiLayer Network Architectures
- arxiv url: http://arxiv.org/abs/2208.04438v1
- Date: Mon, 8 Aug 2022 21:39:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 12:39:33.861815
- Title: Occlusion-Aware Instance Segmentation via BiLayer Network Architectures
- Title(参考訳): BiLayerネットワークアーキテクチャによるOcclusion-Aware Instance Segmentation
- Authors: Lei Ke, Yu-Wing Tai and Chi-Keung Tang
- Abstract要約: 本稿では,2層畳み込みネットワーク(BCNet)を提案する。このネットワークでは,トップ層がオブジェクト(オブオーバ)を検出し,ボトム層が部分的にオブオーバドされたインスタンス(オブオーバド)を推測する。
一般的な畳み込みネットワーク設計,すなわちFCN(Fully Convolutional Network)とGCN(Graph Convolutional Network)を用いた2層構造の有効性について検討する。
- 参考スコア(独自算出の注目度): 73.45922226843435
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Segmenting highly-overlapping image objects is challenging, because there is
typically no distinction between real object contours and occlusion boundaries
on images. Unlike previous instance segmentation methods, we model image
formation as a composition of two overlapping layers, and propose Bilayer
Convolutional Network (BCNet), where the top layer detects occluding objects
(occluders) and the bottom layer infers partially occluded instances
(occludees). The explicit modeling of occlusion relationship with bilayer
structure naturally decouples the boundaries of both the occluding and occluded
instances, and considers the interaction between them during mask regression.
We investigate the efficacy of bilayer structure using two popular
convolutional network designs, namely, Fully Convolutional Network (FCN) and
Graph Convolutional Network (GCN). Further, we formulate bilayer decoupling
using the vision transformer (ViT), by representing instances in the image as
separate learnable occluder and occludee queries. Large and consistent
improvements using one/two-stage and query-based object detectors with various
backbones and network layer choices validate the generalization ability of
bilayer decoupling, as shown by extensive experiments on image instance
segmentation benchmarks (COCO, KINS, COCOA) and video instance segmentation
benchmarks (YTVIS, OVIS, BDD100K MOTS), especially for heavy occlusion cases.
Code and data are available at https://github.com/lkeab/BCNet.
- Abstract(参考訳): 画像上の実際の物体輪郭と咬合境界との間には区別がないため、重なり合う画像オブジェクトのセグメンテーションは困難である。
従来のインスタンス分割法と異なり,画像形成を重なり合う2つの層からなる構成としてモデル化し,上層がoccluding object (occluders) を検出し,下層が部分的にoccluded instance (occludees) を推定するbilayer convolutional network (bcnet)を提案する。
二重層構造との咬合関係の明示的なモデリングは、隠蔽と隠蔽の双方の境界を自然に分離し、マスク回帰中の相互作用を考察する。
本稿では,2つの一般的な畳み込みネットワーク設計,すなわちFCN(Fully Convolutional Network)とGCN(Graph Convolutional Network)を用いた2層構造の有効性について検討する。
さらに,視覚トランスフォーマ(vit)を用いて,画像中のインスタンスを分離学習可能なオクルーダとoccludeeクエリとして表現することにより,二層デカップリングを定式化する。
画像インスタンスセグメンテーションベンチマーク (COCO, KINS, COCOA) とビデオインスタンスセグメンテーションベンチマーク (YTVIS, OVIS, BDD100K MOTS) の広範な実験で示されているように, 様々なバックボーンとネットワーク層を選択する1段階および2段階のオブジェクト検出器による大規模かつ一貫した改善は, 二重層デカップリングの一般化能力を検証する。
コードとデータはhttps://github.com/lkeab/bcnetで入手できる。
関連論文リスト
- Adaptive Graph Convolution Module for Salient Object Detection [7.278033100480174]
本稿では,複雑なシーンを扱うための適応型グラフ畳み込みモジュール(AGCM)を提案する。
学習可能な領域生成層を用いて入力画像からプロトタイプ特徴を抽出する。
提案したAGCMは,SOD性能を定量的かつ定量的に劇的に向上させる。
論文 参考訳(メタデータ) (2023-03-17T07:07:17Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Augmenting Convolutional networks with attention-based aggregation [55.97184767391253]
我々は,非局所的推論を実現するために,注目に基づくグローバルマップを用いた畳み込みネットワークの強化方法を示す。
この学習集約層を2つのパラメータ(幅と深さ)でパラメータ化した単純パッチベースの畳み込みネットワークで接続する。
これは、特にメモリ消費の点で、精度と複雑さの間の驚くほど競争力のあるトレードオフをもたらす。
論文 参考訳(メタデータ) (2021-12-27T14:05:41Z) - Recurrence along Depth: Deep Convolutional Neural Networks with
Recurrent Layer Aggregation [5.71305698739856]
本稿では,従来のレイヤからの情報を再利用して,現在のレイヤの特徴をよりよく抽出する方法を説明するために,レイヤアグリゲーションの概念を紹介する。
我々は,深層CNNにおける層構造を逐次的に利用することにより,RLA(recurrent layer aggregate)と呼ばれる非常に軽量なモジュールを提案する。
私たちのRLAモジュールは、ResNets、Xception、MobileNetV2など、多くの主要なCNNと互換性があります。
論文 参考訳(メタデータ) (2021-10-22T15:36:33Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - Contour Proposal Networks for Biomedical Instance Segmentation [0.8602553195689513]
Contour Proposal Network (CPN) という,概念的に単純なオブジェクトインスタンスセグメンテーションフレームワークを提案する。
CPNは、Fourier Descriptorsに基づく解釈可能な固定サイズの表現を使用して、閉じたオブジェクトの輪郭を同時に取り付けながら、画像内のおそらく重複するオブジェクトを検出する。
U-Net や Mask R-CNN のセグメンテーション精度を上回った CPN と,リアルタイムアプリケーションに適した実行時間を持つ変種を示す。
論文 参考訳(メタデータ) (2021-04-07T21:00:45Z) - Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [72.38919601150175]
高オーバーラップオブジェクトをセグメント化するBilayer Convolutional Network (BCNet)を提案する。
BCNetはオクルージョンオブジェクト(Occluder)を検出し、ボトムGCN層は部分的にOccludedインスタンス(Occludee)を推論する
論文 参考訳(メタデータ) (2021-03-23T06:25:42Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
境界認識ネットワーク(basnet)は、精度の高い画像分割のための予測再定義アーキテクチャとハイブリッド損失と統合されている。
basnetは単一のgpu上で70fps以上動作し、多くの潜在的なアプリケーションが利用できる。
BASNetをベースに、BASNetが「COPY」と「PASTING」現実世界のオブジェクトのための拡張現実であるAR COPY & PASTEと、オブジェクト背景の自動削除のためのWebベースのツールであるOBJECT CUTの2つの(近い)商用アプリケーションをさらに開発しました。
論文 参考訳(メタデータ) (2021-01-12T19:20:26Z) - Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion [9.536947328412198]
本稿では,隠蔽に頑健な多目的インスタンスセグメンテーションのためのディープネットワークを提案する。
私たちの研究は、神経機能アクティベーションの生成モデルを学習し、オクローダの発見に役立てています。
特に、オブジェクトクラスとそのインスタンスおよびオクルーダーセグメンテーションのフィードフォワード予測を得る。
論文 参考訳(メタデータ) (2020-12-03T17:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。