論文の概要: Object Detection with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2208.04511v1
- Date: Tue, 9 Aug 2022 02:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 12:10:55.728667
- Title: Object Detection with Deep Reinforcement Learning
- Title(参考訳): 深部強化学習による物体検出
- Authors: Manoosh Samiei and Ruofeng Li
- Abstract要約: 深層強化学習に基づく新しいアクティブオブジェクトローカライゼーションアルゴリズムを実装した。
我々は,このMDPに対して,階層的手法と動的手法の2つの異なるアクション設定を比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object localization has been a crucial task in computer vision field. Methods
of localizing objects in an image have been proposed based on the features of
the attended pixels. Recently researchers have proposed methods to formulate
object localization as a dynamic decision process, which can be solved by a
reinforcement learning approach. In this project, we implement a novel active
object localization algorithm based on deep reinforcement learning. We compare
two different action settings for this MDP: a hierarchical method and a dynamic
method. We further perform some ablation studies on the performance of the
models by investigating different hyperparameters and various architecture
changes.
- Abstract(参考訳): オブジェクトのローカライゼーションは、コンピュータビジョンの分野で重要なタスクである。
画像中の物体を局所化する手法は,画素の特徴に基づいて提案されている。
近年,物体の局所化を動的決定過程として定式化する方法が提案されている。
本研究では,深層強化学習に基づく新しい能動物体定位アルゴリズムを実装した。
このmdpのための2つの異なるアクション設定を比較する:階層型メソッドと動的メソッドである。
さらに、異なるハイパーパラメータと様々なアーキテクチャ変化を調査して、モデルの性能に関するアブレーション研究を行う。
関連論文リスト
- Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
単一ドメインの一般化は、単一のソースドメインデータからモデルを学び、他の見えないターゲットドメイン上での一般的なパフォーマンスを達成することを目的としている。
本稿では,画像の複雑さの変化に対応することを目的とした,素早い学習に基づく動的物体中心知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T16:16:51Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
本稿では,アクター批判とモデルに基づくアプローチを組み合わせたオブジェクト中心強化学習アルゴリズムを提案する。
変換器エンコーダを用いてオブジェクト表現とグラフニューラルネットワークを抽出し、環境のダイナミクスを近似する。
本アルゴリズムは,現状のモデルフリーアクター批判アルゴリズムよりも複雑な3次元ロボット環境と構成構造をもつ2次元環境において,より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-26T06:05:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
本研究では,様々な抽象レベルで動的かつ適応的な表現を学習し,効率と効率の最適なトレードオフを実現する方法について検討する。
具体的には、環境の動的分解能粒子表現を構築し、グラフニューラルネットワーク(GNN)を用いた統一力学モデルを学ぶ。
本手法は, 粒状オブジェクトの収集, ソート, 再分配において, 最先端の固定解像度ベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-06-29T05:51:44Z) - Learning-based Relational Object Matching Across Views [63.63338392484501]
本稿では,RGB画像間のオブジェクト検出をマッチングするための,局所キーポイントと新たなオブジェクトレベルの特徴を組み合わせた学習ベースアプローチを提案する。
我々は、連想グラフニューラルネットワークにおいて、オブジェクト間の外観とフレーム間およびフレーム間空間関係に基づいて、オブジェクトレベルのマッチング機能を訓練する。
論文 参考訳(メタデータ) (2023-05-03T19:36:51Z) - Localizing Object-level Shape Variations with Text-to-Image Diffusion
Models [60.422435066544814]
本稿では,特定の物体の形状の変化を表現した画像の集合を生成する手法を提案する。
オブジェクトのバリエーションを生成する際の特に課題は、オブジェクトの形状に適用される操作を正確にローカライズすることである。
画像空間の操作をローカライズするために,自己注意層と交差注意層を併用する2つの手法を提案する。
論文 参考訳(メタデータ) (2023-03-20T17:45:08Z) - Dynamic Object Removal for Effective Slam [1.8907108368038215]
本稿では,この課題に対処する2段階のプロセスを提案する。フローベース手法を用いてシーン内の動的オブジェクトを抽出し,ディープビデオ塗装アルゴリズムを用いて除去する。
本研究の目的は,2つの最先端SLAMアルゴリズム,ORB-SLAM2 と LSD を用いてベースライン結果と比較し,動的オブジェクトとそれに対応するトレードオフの影響を理解することである。
論文 参考訳(メタデータ) (2023-03-20T07:47:36Z) - D2SLAM: Semantic visual SLAM based on the influence of Depth for Dynamic
environments [0.483420384410068]
一般化とシーン認識に欠ける動的要素を決定するための新しい手法を提案する。
我々は,幾何学的および意味的モジュールからの推定精度を向上するシーン深度情報を用いる。
その結果, 動的環境における正確な位置推定とマッピングを行う上で, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-16T22:13:59Z) - SemAug: Semantically Meaningful Image Augmentations for Object Detection
Through Language Grounding [5.715548995729382]
本研究では,シーンに文脈的に意味のある知識を注入することで,画像強調のための効果的な手法を提案する。
本手法は,意味的に適切な新しいオブジェクトを抽出することから,言語接地によるオブジェクト検出のための意味的意味的画像強調法であるSemAugを出発点とする。
論文 参考訳(メタデータ) (2022-08-15T19:00:56Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
画像操作の検出とローカライズを行うObjectFormerを提案する。
画像の高周波特徴を抽出し,マルチモーダルパッチの埋め込みとしてRGB特徴と組み合わせる。
各種データセットについて広範な実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-28T12:27:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。