Classification of Stress via Ambulatory ECG and GSR Data
- URL: http://arxiv.org/abs/2208.04705v2
- Date: Thu, 8 Jun 2023 14:46:47 GMT
- Title: Classification of Stress via Ambulatory ECG and GSR Data
- Authors: Zachary Dair, Muhammad Muneeb Saad, Urja Pawar, Samantha Dockray,
Ruairi O'Reilly
- Abstract summary: This work empirically assesses several approaches to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations.
The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-submission, 90.42 Sensitivity and 91.08 Specificity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In healthcare, detecting stress and enabling individuals to monitor their
mental health and wellbeing is challenging. Advancements in wearable technology
now enable continuous physiological data collection. This data can provide
insights into mental health and behavioural states through psychophysiological
analysis. However, automated analysis is required to provide timely results due
to the quantity of data collected. Machine learning has shown efficacy in
providing an automated classification of physiological data for health
applications in controlled laboratory environments. Ambulatory uncontrolled
environments, however, provide additional challenges requiring further
modelling to overcome. This work empirically assesses several approaches
utilising machine learning classifiers to detect stress using physiological
data recorded in an ambulatory setting with self-reported stress annotations. A
subset of the training portion SMILE dataset enables the evaluation of
approaches before submission. The optimal stress detection approach achieves
90.77% classification accuracy, 91.24 F1-Score, 90.42 Sensitivity and 91.08
Specificity, utilising an ExtraTrees classifier and feature imputation methods.
Meanwhile, accuracy on the challenge data is much lower at 59.23% (submission
#54 from BEaTS-MTU, username ZacDair). The cause of the performance disparity
is explored in this work.
Related papers
- Context-Aware Stress Monitoring using Wearable and Mobile Technologies
in Everyday Settings [2.650926942973848]
We present a monitoring system that objectively tracks daily stress levels by utilizing both physiological and contextual data.
We propose a three-tier Internet-of-Things-based system architecture to address the challenges.
arXiv Detail & Related papers (2023-12-14T19:16:11Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
Stress is widely recognized as a major contributor to a variety of health issues.
Real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities.
However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes.
arXiv Detail & Related papers (2023-08-04T22:26:33Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - ForDigitStress: A multi-modal stress dataset employing a digital job
interview scenario [48.781127275906435]
We present a multi-modal stress dataset that uses digital job interviews to induce stress.
The dataset provides multi-modal data of 40 participants including audio, video and physiological information.
In order to establish a baseline, five different machine learning classifiers have been trained and evaluated.
arXiv Detail & Related papers (2023-03-14T09:40:37Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
We explore objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV)
We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling.
arXiv Detail & Related papers (2021-07-31T04:15:15Z) - ReLearn: A Robust Machine Learning Framework in Presence of Missing Data
for Multimodal Stress Detection from Physiological Signals [5.042598205771715]
We propose ReLearn, a robust machine learning framework for stress detection from biomarkers extracted from multimodal physiological signals.
ReLearn effectively copes with missing data and outliers both at training and inference phases.
Our experiments show that the proposed framework obtains a cross-validation accuracy of 86.8% even if more than 50% of samples within the features are missing.
arXiv Detail & Related papers (2021-04-29T11:53:01Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.