論文の概要: Semantic Segmentation-Assisted Instance Feature Fusion for Multi-Level
3D Part Instance Segmentation
- arxiv url: http://arxiv.org/abs/2208.04766v1
- Date: Tue, 9 Aug 2022 13:22:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 12:44:47.203199
- Title: Semantic Segmentation-Assisted Instance Feature Fusion for Multi-Level
3D Part Instance Segmentation
- Title(参考訳): セマンティクスセグメンテーション支援インスタンス特徴融合によるマルチレベル3d部分インスタンスセグメンテーション
- Authors: Chunyu Sun, Xin Tong, Yang Liu
- Abstract要約: 本稿では,3次元部分分割のための新しい手法を提案する。
本手法は, セマンティックセグメンテーションを利用して, 中心予測などの非局所的なインスタンス特徴を融合する。
提案手法は,PartNetベンチマークで大きく改善された既存手法よりも優れている。
- 参考スコア(独自算出の注目度): 17.929866369256555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognizing 3D part instances from a 3D point cloud is crucial for 3D
structure and scene understanding. Several learning-based approaches use
semantic segmentation and instance center prediction as training tasks and fail
to further exploit the inherent relationship between shape semantics and part
instances. In this paper, we present a new method for 3D part instance
segmentation. Our method exploits semantic segmentation to fuse nonlocal
instance features, such as center prediction, and further enhances the fusion
scheme in a multi- and cross-level way. We also propose a semantic region
center prediction task to train and leverage the prediction results to improve
the clustering of instance points. Our method outperforms existing methods with
a large-margin improvement in the PartNet benchmark. We also demonstrate that
our feature fusion scheme can be applied to other existing methods to improve
their performance in indoor scene instance segmentation tasks.
- Abstract(参考訳): 3Dポイントクラウドから3D部分インスタンスを認識することは、3D構造とシーン理解に不可欠である。
いくつかの学習ベースのアプローチでは、セマンティックセグメンテーションとインスタンスセンター予測をトレーニングタスクとして使用し、形状セマンティクスと部分インスタンスの関係をさらに活用することができない。
本稿では,3次元部分インスタンスセグメンテーションのための新しい手法を提案する。
提案手法は, セマンティックセグメンテーションを利用して, 中心予測などの非局所的なインスタンス特徴を融合し, マルチレベル・クロスレベルの融合スキームをさらに強化する。
また,インスタンスポイントのクラスタリングを改善するために,予測結果を訓練し活用するための意味領域中心予測タスクを提案する。
提案手法は,PartNetベンチマークで大きく改善された既存手法よりも優れている。
また,提案手法を他の既存手法に適用することで,屋内シーンインスタンスセグメンテーションタスクの性能を向上させることができることを示した。
関連論文リスト
- SegPoint: Segment Any Point Cloud via Large Language Model [62.69797122055389]
我々は,多種多様なタスクにまたがるポイントワイドセグメンテーションマスクを生成するSegPointと呼ばれるモデルを提案する。
SegPointは、単一のフレームワーク内でさまざまなセグメンテーションタスクに対処する最初のモデルである。
論文 参考訳(メタデータ) (2024-07-18T17:58:03Z) - Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
ラベルのないデータから純粋なインスタンス知識を探索し活用するための,新たな自己学習ネットワークInsTeacher3Dを提案する。
複数の大規模データセットの実験結果から、InsTeacher3Dは最先端の半教師付きアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-06-24T16:35:58Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - Instance-aware 3D Semantic Segmentation powered by Shape Generators and
Classifiers [28.817905887080293]
本稿では,3次元セマンティックセグメンテーションのための新しいインスタンス認識手法を提案する。
本手法は,学習した特徴表現の一貫性を促進するために,インスタンスレベルでの幾何処理タスクを組み合わせる。
論文 参考訳(メタデータ) (2023-11-21T02:14:16Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3Dセマンティックシーン理解タスクは、ディープラーニングの出現によって大きな成功を収めた。
本稿では,分類的セマンティックラベルのみを監督対象とする,弱制御型3Dインスタンスセマンティクス手法を提案する。
分類的セマンティックラベルから擬似インスタンスラベルを生成することで,アノテーションコストの低減で既存の3Dインスタンスセグメンテーションの学習を支援することができる。
論文 参考訳(メタデータ) (2023-08-03T12:30:52Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Robust 3D Scene Segmentation through Hierarchical and Learnable
Part-Fusion [9.275156524109438]
3Dセマンティックセグメンテーションは、自律運転、ロボット工学、AR/VRといったいくつかのシーン理解アプリケーションのための基本的なビルディングブロックである。
従来の手法では、階層的で反復的な手法を用いて意味や事例情報を融合するが、文脈融合における学習性は欠如している。
本稿では,セグメンテーション・フュージョン(Seegment-Fusion)について述べる。
論文 参考訳(メタデータ) (2021-11-16T13:14:47Z) - Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes [17.217954254022573]
メタラーニングに基づく3次元形状分割手法を提案する。
本稿では,ShapeNet部データセットにおける提案手法の優れた性能を,既存のベースラインや最先端の半教師手法と比較し,いくつかのシナリオで示す。
論文 参考訳(メタデータ) (2021-07-07T01:47:00Z) - Self-Prediction for Joint Instance and Semantic Segmentation of Point
Clouds [41.75579185647845]
我々は,3次元のインスタンスと点雲のセマンティックセグメンテーションのための新たな学習手法であるSelf-Predictionを開発した。
本手法は,S3DISとShapeNetのインスタンスセグメンテーション結果と,S3DISとShapeNetのセグメンテーション結果に匹敵するセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2020-07-27T07:58:00Z) - SASO: Joint 3D Semantic-Instance Segmentation via Multi-scale Semantic
Association and Salient Point Clustering Optimization [8.519716460338518]
セグメンテーションタスクとインスタンスセグメンテーションタスクを共同で行う,SASOという新しい3Dポイントクラウドセグメンテーションフレームワークを提案する。
空間的文脈におけるオブジェクト間の固有相関から着想を得たセグメンテーションタスクに対して,マルチスケールセマンティックアソシエーション(MSA)モジュールを提案する。
例えば、推論手順のみでクラスタリングを利用する以前の作業とは異なるセグメンテーションタスクでは、Salient Point Clustering Optimization (SPCO) モジュールを提案する。
論文 参考訳(メタデータ) (2020-06-25T08:55:25Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。