Modelling of planar germanium hole qubits in electric and magnetic fields
- URL: http://arxiv.org/abs/2208.04795v2
- Date: Wed, 28 Aug 2024 16:29:14 GMT
- Title: Modelling of planar germanium hole qubits in electric and magnetic fields
- Authors: Chien-An Wang, Ercan Ekmel, Mark Gyure, Giordano Scappucci, Menno Veldhorst, Maximilian Rimbach-Russ,
- Abstract summary: Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention.
We perform simulations of a heterostructure hosting these hole spin qubits.
We find that sweet spots, points of operations that are least susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically large electric fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favourable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric fields. However, it also couples the qubit to electrical noise. In this work, we perform simulations of a heterostructure hosting these hole spin qubits. We solve the effective mass equations for a realistic heterostructure, provide a set of analytical basis wave functions, and compute the effective g-factor of the heavy-hole ground-state. Our investigations reveal a strong impact of highly excited light-hole states located outside the quantum well on the g-factor. We find that sweet spots, points of operations that are least susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically large electric fields. However, for magnetic fields close to in-plane alignment, partial sweet spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple fluctuating charge traps can be found under certain circumstances for different magnetic field alignments. This work will be helpful in understanding and improving coherence of germanium hole spin qubits.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Navigating the 16-dimensional Hilbert space of a high-spin donor qudit
with electric and magnetic fields [41.74498230885008]
We present an atom-based semiconductor platform where a 16-dimensional Hilbert space is built by the combined electron-nuclear states of a single donor antimony in silicon.
We demonstrate the ability to navigate this large Hilbert space using both electric and magnetic fields, with gate fidelity exceeding 99.8% on the nuclear spin.
arXiv Detail & Related papers (2023-06-12T22:55:47Z) - Enhanced orbital magnetic field effects in Ge hole nanowires [0.0]
Hole semiconductor nanowires (NW) are promising platforms to host spin qubits and Majorana bound states for topological qubits.
We analyze in detail the dependence of the SOI and $g$ factors on the orbital magnetic field.
arXiv Detail & Related papers (2022-07-25T10:41:45Z) - Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum
dots [0.0]
An anomalous energy splitting of spin triplet states at zero magnetic field has been measured in germanium quantum dots.
This zero-field splitting could crucially alter the coupling between tunnel-coupled quantum dots.
We develop an analytical model linking the zero-field splitting to spin-orbit interactions that are cubic in momentum.
arXiv Detail & Related papers (2022-05-05T11:45:24Z) - Quantum Dots / Spin Qubits [0.0]
Spin qubits in semiconductor quantum dots represent a prominent family of solid-state qubits in the effort to build a quantum computer.
The simplest spin qubit is a single electron spin located in a quantum dot.
Spin qubits experience complex effects due to their semiconductor environment.
arXiv Detail & Related papers (2022-04-08T19:21:19Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Hole Spin Qubits in Ge Nanowire Quantum Dots: Interplay of Orbital
Magnetic Field, Strain, and Growth Direction [0.0]
Hole spin qubits in quasi one-dimensional structures are a promising platform for quantum information processing.
We show that at the magnetic field values at which qubits are operated, orbital effects of magnetic fields can strongly affect the response of the spin qubit.
We study one-dimensional hole systems in Ge under the influence of electric and magnetic fields applied perpendicularly to the device.
arXiv Detail & Related papers (2021-10-28T12:00:26Z) - All-electrical control of hole singlet-triplet spin qubits at low
leakage points [0.0]
We study the effect of the spin-orbit interaction on heavy holes confined in a double quantum dot in the presence of a magnetic field of arbitrary direction.
It is demonstrated that these effects may counteract in such a way as to cancel the coupling at certain detunings and tilting angles of the magnetic field.
arXiv Detail & Related papers (2021-07-27T06:34:26Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.