Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum
dots
- URL: http://arxiv.org/abs/2205.02582v1
- Date: Thu, 5 May 2022 11:45:24 GMT
- Title: Anomalous zero-field splitting for hole spin qubits in Si and Ge quantum
dots
- Authors: Bence Het\'enyi and Stefano Bosco and Daniel Loss
- Abstract summary: An anomalous energy splitting of spin triplet states at zero magnetic field has been measured in germanium quantum dots.
This zero-field splitting could crucially alter the coupling between tunnel-coupled quantum dots.
We develop an analytical model linking the zero-field splitting to spin-orbit interactions that are cubic in momentum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An anomalous energy splitting of spin triplet states at zero magnetic field
has recently been measured in germanium quantum dots. This zero-field splitting
could crucially alter the coupling between tunnel-coupled quantum dots, the
basic building blocks of state-of-the-art spin-based quantum processors, with
profound implications for semiconducting quantum computers. We develop an
analytical model linking the zero-field splitting to spin-orbit interactions
that are cubic in momentum. Such interactions naturally emerge in hole
nanostructures, where they can also be tuned by external electric fields, and
we find them to be particularly large in silicon and germanium, resulting in a
significant zero-field splitting in the $\mu$eV range. We confirm our
analytical theory by numerical simulations of different quantum dots, also
including other possible sources of zero-field splitting. Our findings are
applicable to a broad range of current architectures encoding spin qubits and
provide a deeper understanding of these materials, paving the way towards the
next generation of semiconducting quantum processors.
Related papers
- Quantum Entanglement in a Diluted Magnetic Semiconductor Quantum Dot [0.0]
We investigate entanglement in a diluted magnetic semiconductor quantum dot, crucial for quantum technologies.
Our analysis involves defining wavefunctions, employing density matrix operators, and measuring entanglement entropy.
Numerical assessments reveal few promising pairs among various quantum dot combinations that exhibit significant entanglement.
arXiv Detail & Related papers (2024-03-11T08:57:10Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Quantum Dots / Spin Qubits [0.0]
Spin qubits in semiconductor quantum dots represent a prominent family of solid-state qubits in the effort to build a quantum computer.
The simplest spin qubit is a single electron spin located in a quantum dot.
Spin qubits experience complex effects due to their semiconductor environment.
arXiv Detail & Related papers (2022-04-08T19:21:19Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - The germanium quantum information route [2.449694738547425]
We introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective.
We examine the material science progress underpinning germanium-based planar heterostructures and nanowires.
We conclude by identifying the most promising prospects toward scalable quantum information processing.
arXiv Detail & Related papers (2020-04-17T09:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.