Exploring the trade off between human driving imitation and safety for
traffic simulation
- URL: http://arxiv.org/abs/2208.04803v1
- Date: Tue, 9 Aug 2022 14:30:19 GMT
- Title: Exploring the trade off between human driving imitation and safety for
traffic simulation
- Authors: Yann Koeberle, Stefano Sabatini, Dzmitry Tsishkou, Christophe Sabourin
- Abstract summary: We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
- Score: 0.34410212782758043
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic simulation has gained a lot of interest for quantitative evaluation
of self driving vehicles performance. In order for a simulator to be a valuable
test bench, it is required that the driving policy animating each traffic agent
in the scene acts as humans would do while maintaining minimal safety
guarantees. Learning the driving policies of traffic agents from recorded human
driving data or through reinforcement learning seems to be an attractive
solution for the generation of realistic and highly interactive traffic
situations in uncontrolled intersections or roundabouts. In this work, we show
that a trade-off exists between imitating human driving and maintaining safety
when learning driving policies. We do this by comparing how various Imitation
learning and Reinforcement learning algorithms perform when applied to the
driving task. We also propose a multi objective learning algorithm (MOPPO) that
improves both objectives together. We test our driving policies on highly
interactive driving scenarios extracted from INTERACTION Dataset to evaluate
how human-like they behave.
Related papers
- Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
We introduce an efficient method to train diverse driving policies for social vehicles as a single meta-policy.
By randomizing the interaction-based reward functions of social vehicles, we can generate diverse objectives and efficiently train the meta-policy.
We propose a training strategy to enhance the robustness of the ego vehicle's driving policy using the environment where social vehicles are controlled by the learned meta-policy.
arXiv Detail & Related papers (2023-07-19T17:42:36Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
This study focuses on creating risk prone scenarios with heavy traffic and unexpected random behavior for creating better model-free learning agents.
We generate multiple autonomous driving scenarios by creating new custom Markov Decision Process (MDP) environment iterations in highway-env simulation package.
We train model free learning agents with supplement information of risk prone driving scenarios and compare their performance with baseline agents.
arXiv Detail & Related papers (2021-03-16T23:39:33Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
We introduce a model-free, deep reinforcement learning approach to generate automated human-like driving policies.
We study a static obstacle avoidance task on a two-lane highway road in simulation.
We demonstrate that our approach leads to human-like driving policies.
arXiv Detail & Related papers (2020-06-07T18:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.